

## 4 Matrix Build

### 4.1 Methodology

The highway matrix has been built from three components:

- Observed matrix (based on RSI surveys);
- Synthetic matrix (based on land-use information); and
- Trafficmaster matrix (based on Trafficmaster origin-destination data).

A brief overview of the matrix development is presented in this section, full details can be found in Appendix C.

### 4.2 Observed Matrix

The observed matrix has been developed using the 2015 origin-destination surveys described in xxxxx plus the set of RSIs undertaken around Birkenhead in 2009 (described in section xxx). To provide a complete set of movements in the buffer area, RSIs are also included from surveys undertaken in the Liverpool City Region. Any gaps in the RSI cordon have been infilled based on an assignment of the synthetic matrix.

The RSI data has been expanded to traffic counts to be representative of traffic flows in 2015.

The individual site matrices have been transposed, and return trip times have been calibrated using local data sources.

The RSI data-set has been compiled using ERICA, which is the DfT recommended and approved software for the purpose of matrix building using RSI records. This software allows for the building of large matrices with multiple observed RSI cordons and contains a technique for the identification and removal of 'wiggly' trips, i.e. those that make several crossings of the same cordon boundary. ERICA also contains processes for identifying and removing trips that will have been observed at more than one cordon boundary.

### 4.3 Synthetic Matrix

The LCRTM synthetic matrix has been converted to the WTM zoning system for use in the WTM model.

The purpose of the synthetic matrix is to provide a complete representation of demand to, from and within the LCRTM Study Area. This is used in two ways, firstly to strengthen the observed matrices and secondly to infill any areas where observed data is not available. Within LCRTM, land use information e.g. numbers of housing and jobs are used in conjunction with observed trip rates to synthesise travel demand. The matrices are calibrated to meet the trip distribution from Census Travel To Work data (commute trips), and mean trip lengths from the Merseyside Countywide Household Travel Survey.



### 4.4 TrafficMaster Matrix

The LCRTM Trafficmaster matrix has been converted to the WTM zoning system for use in the WTM model.

Trafficmaster data is provided by the DfT as individual trip records in the Trafficmaster zoning system for a 12 month period. Trip data has been extracted from the data-set, and has been converted to an annual average weekday. This data has then been expanded to LCRTM RSI matrix totals for inter-sector movements and LCRTM synthetic matrix totals for intra-sector movements. The trip data has been profiled using the synthetic matrix trip purposes; and trip length distributions to produce segmented trip matrices by time period. The LCRTM sector movements are consistent with the Wirral sectors as described in Section 5.1.

### 4.5 **Prior Matrix**

A prior matrix, which has been taken forward into model calibration has been produced by combining the different matrices described above:

- Firstly, the RSI matrices have been merged with the Trafficmaster matrices to produce a final observed matrix; and thenThe observed and synthetic matrices have then been merged at a sector level using the following weightings:
- Inter Zonal Sectors: 90% (Observed) : 10% (Synthetic)
- Intra Zonal Sectors: 100% (Synthetic)

For model assignment, the trip purpose matrices have been aggregated into the following (five) user classes (UC):

- UC1 Car Commute
- UC2 Car Other
- UC3 Car Employers Business
- UC4 LGV
- UC5 OGV

Prior matrix totals are presented in Table 4.1 and corresponding trip purpose splits are shown in Table 4.2.

### Table 4.1:Summary of matrix totals (PCUs)

| User Class                   | AM Peak Hour<br>(08:00 to 09:00) | Average IP Hour<br>(10:00 to 16:00) | PM Peak Hour<br>(17:00 to 18:00) |
|------------------------------|----------------------------------|-------------------------------------|----------------------------------|
| UC1 - Car Commute            | 277,521                          | 64,580                              | 225,182                          |
| UC2 - Car Other              | 329,078                          | 364,305                             | 384,470                          |
| UC3 - Car Employers Business | 28,983                           | 24,597                              | 37,409                           |
| UC4 - LGV                    | 47,165                           | 44,017                              | 43,479                           |
| UC5 - OGV                    | 27,186                           | 28,088                              | 18,129                           |
| Total                        | 709,934                          | 525,588                             | 708,669                          |

16 350170/ITD/ITN/1/A 07 April 2016

<sup>\</sup>mottmac\project\Liverpool\ITD\MISData\Modelling\WirralModel\WP5-BaseYearAssignments\WP5a-Documents\Wirral\_2015\_Model\_Rebase\_LMVR\_RevA\_Draft\_v2.docx



### Table 4.2: Trip Purpose Splits

| User Class                   | AM Peak Hour<br>(08:00 to 09:00) | Average IP Hour<br>(10:00 to 16:00) | PM Peak Hour<br>(17:00 to 18:00) |
|------------------------------|----------------------------------|-------------------------------------|----------------------------------|
| UC1 - Car Commute            | 39%                              | 12%                                 | 32%                              |
| UC2 - Car Other              | 46%                              | 69%                                 | 54%                              |
| UC3 - Car Employers Business | 4%                               | 5%                                  | 5%                               |
| UC4 - LGV                    | 7%                               | 8%                                  | 6%                               |
| UC5 - OGV                    | 4%                               | 5%                                  | 3%                               |
| Total                        | 100%                             | 100%                                | 100%                             |



## 5 Model Calibration

### 5.1 Overview

Model calibration has been carried out to improve the correlation between observed and modelled traffic conditions. Cordons and screenlines applied in model calibration are shown in Figure 5.1 and Figure 5.2.

Four calibration cordons have been defined that capture traffic movements across the model simulation area.

- Cordons 1 and 2 are based on the RSI cordons that were defined to capture traffic movements entering / leaving the Birkenhead and north-east Wirral area.
- The third calibration cordon covers West Wirral; and
- The fourth cordon has been constructed to calibrate traffic flows entering / leaving south-east Wirral.

Nine screenlines have been constructed with the following objectives:

- 1. To calibrate traffic flows crossing the River Mersey and Wirral Docklands;
- 2. To calibrate traffic flows crossing between cordons; and
- 3. To calibrate traffic flows in the buffer area of the model.

The cordons and screenlines are defined as follows:

#### Cordons

- 1 Birkenhead Inner
- 2 Birkenhead Outer
- 3 Wirral South-East
- 4 West of M53

### Screenlines

- 5 River Crossings
- 6 Wirral Dock Crossings
- 7 North of Kingsway Tunnel
- 8 Birkenhead Town Centre South
- 9 Mid-Wirral East to West
- 10 Mid-Wirral North to South
- 11 Hoylake to West Kirby
- 12 West Kirby
- 13 Heswall

Local Model Validation Report



### Figure 5.1: Calibration Cordons for Matrix Calibration



Local Model Validation Report



#### Figure 5.2: Calibration Screenlines for Matrix Calibration





### 5.2 Model Assignment Convergence

Model convergence checks have been carried out to ascertain the stability of the model assignment results. This has been done by observing the flow difference of subsequent iterations within the model assignment as a measure of model stability.

The stopping criteria for the assignment/simulation loops in SATURN, as specified in TAG Unit M3.1 is for the percentage of links with flow changing by less than 1% (denoted as %FLOWS) to be greater than 98% on four consecutive iterations. Even though this guideline is used to show that the model is stable, a truer measure is the duality gap (delta, d, %GAP) which represents the percentage difference between the minimum cost routes and the chosen routes summed across the network. TAG Unit M3.1 recommends that delta and %GAP should be less than 0.1%. Reference should be made to Table 5.1.

| Measure of Convergence                       | Base Model Acceptable Values                                                                   |  |  |  |  |  |
|----------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Delta and %GAP                               | Less than 0.1% or at least stable with convergence fully documented and all other criteria met |  |  |  |  |  |
| Percentage of links with flow change (P)<1%  | Four consecutive iterations greater than 98%                                                   |  |  |  |  |  |
| Percentage of links with cost change (P2)<1% | Four consecutive iterations greater than 98%                                                   |  |  |  |  |  |
| Source: Table 4, TAG UNIT M3,1 Highway       | Assignment Modelling, October 2013                                                             |  |  |  |  |  |

#### Table 5.1: Summary of Convergence Measures and Base Model Acceptable Values

Model convergence statistics are presented in Appendix D for the final iterations of the AM, IP and PM models. From reference to the statistics, it is evident that the model convergence criteria have been achieved for all time periods.

- The "%FLOWS" values are higher than 98% in the final four assignment loops for all models
- "%GAP" values of 0.016%, 0.0042% and 0.014% have been achieved for the AM, IP and PM models respectively.

### 5.3 Change in the Matrix due to Matrix Estimation

Table 5.2 presents the change in matrix totals due to matrix estimation. Further detail on the matrix changes is presented in Appendix J.

| Table 5.2: | Matrix | Total | Comparison |
|------------|--------|-------|------------|
|------------|--------|-------|------------|

|            | Prior ME Matrix | Post ME Matrix | Difference | Percentage Difference (%) |
|------------|-----------------|----------------|------------|---------------------------|
| AM Peak    | 709,934         | 730,127        | 20,194     | 2.8%                      |
| Inter Peak | 525,588         | 536,472        | 10,885     | 2.1%                      |
| PM Peak    | 708,669         | 720,710        | 12,041     | 1.7%                      |



#### **Traffic Flow Calibration / Validation Criteria** 5.4

Table 5.3 shows the DfT Transport Analysis Guidance (TAG) validation criteria for cordons and screenlines, and Table 5.4 shows the TAG validation criteria for individual link flow comparisons.

| Table 5.3: Cor | don / Screenlir | ne Validation | - TAG Criteria |
|----------------|-----------------|---------------|----------------|
|----------------|-----------------|---------------|----------------|

| Criteria                                      | Acceptability Guideline       |
|-----------------------------------------------|-------------------------------|
| Differences between modelled flows and counts | All or nearly all screenlines |
| should be less than 5% of the counts          |                               |
|                                               |                               |

Source: Table 1, TAG UNIT M3.1 Highway Assignment Modelling, October 2013

#### Table 5.4: Individual Link Flow Validation – TAG Criteria

| Criteria | Description of Criteria                                                     | Acceptability Guideline |
|----------|-----------------------------------------------------------------------------|-------------------------|
| 1        | Individual flows within 100 veh/h of counts for flows less than 700 veh/h   | > 85% of cases          |
|          | Individual flows within 15% of counts for flows from 700 to 2,700 veh/h     | > 85% of cases          |
|          | Individual flows within 400 veh/h of counts for flows more than 2,700 veh/h | > 85% of cases          |
| 2        | GEH < 5 for individual flows                                                | > 85% of cases          |
| Source:  | Table 2 TAG LINIT M3 1 Highway Assignment Modelling, October 2013           |                         |

#### 5.5 **Traffic Flow Calibration - Summary**

Traffic flows have been compared for each individual count site location and also collectively through the formation of cordons and screenlines. In total, 194 link counts have been compared, across 26 directional cordons / screenlines.

The individual link flow summary shows that all time periods exceed the TAG threshold (GEH < 5), with the AM, IP, and PM achieving a flow calibration of 94% (183 links), 98% (191 links) and 97% (188 links), respectively.

When compared to the TAG flow difference criteria, all time periods also exceed the recommended 85% threshold, with the AM, IP and PM modelled hours achieving a flow calibration of 95% (184 links), 99% (192 links) and 97% (188 links), respectively. Reference should be made to Table 5.5.

The cordon / screenline summary shows that all time periods achieve a good correspondence to TAG flow difference criteria (less than 5%) with the AM, IP and PM achieving 96% (25), 100% (26), and 92% (24), respectively. Reference should be made to Table 5.6.



### Table 5.5: Individual Link Flow Calibration - Summary

|             |              | TAG GEH<5 cri    | teria      | TAG flow difference | e criteria |
|-------------|--------------|------------------|------------|---------------------|------------|
| Time Period | Total Counts | Number of counts | Percentage | Number of counts    | Percentage |
| AM Peak     | 194          | 183              | 94%        | 184                 | 95%        |
| Inter Peak  | 194          | 191              | 98%        | 192                 | 99%        |
| PM Peak     | 194          | 188              | 97%        | 188                 | 97%        |

#### Table 5.6: Calibration Cordon Flow - Summary

|             |               | TAG GEH<4 cri     | teria      | TAG flow difference <5% criteria |            |  |  |
|-------------|---------------|-------------------|------------|----------------------------------|------------|--|--|
| Time Period | Total Cordons | Number of cordons | Percentage | Number of cordons                | Percentage |  |  |
| AM Peak     | 26            | 26                | 100%       | 25                               | 96%        |  |  |
| Inter Peak  | 26            | 26                | 100%       | 26                               | 100%       |  |  |
| PM Peak     | 26            | 25                | 96%        | 24                               | 92%        |  |  |

### 5.6 Traffic Flow Calibration by Time Period

### 5.6.1 AM Peak Hour

A summary comparison of cordon / screenline traffic flows is presented in Table 5.7. The AM peak hour results show that 96% (25) of cordons by direction achieve TAG flow calibration criteria (flow difference < 5%).

Reference should be made to Figure 5.3 which shows a correlation between observed and modelled calibration counts, for the AM peak hour. The R<sup>2</sup> value is 0.99.





### Figure 5.3: Correlation between Observed and Modelled Flows - AM Peak Hour

### 5.6.2 Average Inter Peak Hour

A summary comparison of cordon / screenline traffic flows is presented in Table 5.8. The Average IP hour results show that 100% (26) of cordons by direction achieve TAG flow calibration criteria (flow difference < 5%).

Reference should be made to Figure 5.4 which shows a correlation between observed and modelled calibration counts, for the Average IP hour. The R<sup>2</sup> value is 0.99.





### Figure 5.4: Correlation between Observed and Modelled Flows – Average IP Peak Hour

### 5.6.3 PM Peak Hour

A summary comparison of cordon / screenline traffic flows is presented in Table 5.9. The PM peak hour results show that 92% (24) of cordons by direction achieve TAG flow calibration criteria (flow difference < 5%).

Reference should be made to Figure 5.5 which shows a correlation between observed and modelled calibration counts, for the PM peak hour. The R<sup>2</sup> value is 0.99.





### Figure 5.5: Correlation between Observed and Modelled Flows – PM Peak Hour

Mott MacDonald

### Table 5.7: Cordon Summary Table – AM Peak Hour

|    | Cordon / Screenline      |            | Obser  | rved Flow (F | PCUs) |        | Modelled Flow (PCUs) |       |       |        | Comp | Comparison (PCUs) |              |  |
|----|--------------------------|------------|--------|--------------|-------|--------|----------------------|-------|-------|--------|------|-------------------|--------------|--|
|    |                          | Dir        | Car    | LGV          | OGV   | Total  | Car                  | LGV   | OGV   | Total  | Diff | % Diff            | Flow<5%      |  |
| 1  | Birkenhead Inner         | Dir 1(IB)  | 8,828  | 1,088        | 404   | 10,320 | 9,027                | 1,076 | 332   | 10,435 | 114  | 1.1%              | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 5,794  | 844          | 367   | 7,005  | 5,964                | 859   | 298   | 7,120  | 115  | 1.6%              | $\checkmark$ |  |
| 2  | Birkenhead Outer         | Dir 1 (IB) | 12,204 | 1,391        | 1,113 | 14,708 | 11,972               | 1,389 | 1,059 | 14,420 | -288 | -2.0%             | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 9,949  | 1,152        | 865   | 11,966 | 9,860                | 1,255 | 1,008 | 12,123 | 157  | 1.3%              | $\checkmark$ |  |
| 3  | Wirral - West of M53     | Dir 1 (IB) | 8,447  | 1,041        | 607   | 10,095 | 8,408                | 1,040 | 616   | 10,064 | -31  | -0.3%             | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 11,025 | 1,062        | 563   | 12,650 | 10,943               | 1,158 | 635   | 12,737 | 86   | 0.7%              | $\checkmark$ |  |
| 4  | Wirral South East        | Dir 1 (IB) | 6,213  | 708          | 416   | 7,336  | 6,176                | 758   | 315   | 7,249  | -87  | -1.2%             | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 7,112  | 755          | 448   | 8,315  | 7,154                | 777   | 419   | 8,350  | 35   | 0.4%              | $\checkmark$ |  |
| 5  | River Crossings          | Dir 1 (IB) | 7,573  | 700          | 755   | 9,028  | 7,545                | 862   | 808   | 9,215  | 188  | 2.1%              | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 5,155  | 856          | 1,391 | 7,401  | 5,219                | 877   | 1,294 | 7,390  | -11  | -0.1%             | $\checkmark$ |  |
| 6  | Wirral Dock Crossings    | Dir 1 (IB) | 1,217  | 206          | 164   | 1,587  | 1,215                | 202   | 160   | 1,576  | -11  | -0.7%             | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 2,120  | 330          | 128   | 2,578  | 2,113                | 321   | 126   | 2,560  | -18  | -0.7%             | $\checkmark$ |  |
| 7  | North of Kingsway Tunnel | Dir 1 (IB) | 3,688  | 430          | 239   | 4,357  | 3,623                | 403   | 184   | 4,211  | -146 | -3.3%             | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 2,757  | 321          | 205   | 3,283  | 2,744                | 324   | 185   | 3,253  | -30  | -0.9%             | $\checkmark$ |  |
| 8  | Birkenhead TC South      | Dir 1 (IB) | 3,756  | 464          | 176   | 4,396  | 3,754                | 464   | 154   | 4,371  | -25  | -0.6%             | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 1,975  | 294          | 104   | 2,373  | 2,024                | 317   | 101   | 2,441  | 68   | 2.9%              | $\checkmark$ |  |
| 9  | Mid-Wirral EW            | Dir 1 (IB) | 6,722  | 864          | 913   | 8,499  | 6,970                | 852   | 871   | 8,694  | 194  | 2.3%              | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 7,578  | 981          | 1,059 | 9,618  | 7,419                | 949   | 972   | 9,340  | -278 | -2.9%             | $\checkmark$ |  |
| 10 | Mid-Wirral NS            | Dir 1 (IB) | 4,880  | 508          | 223   | 5,611  | 4,865                | 522   | 135   | 5,522  | -89  | -1.6%             | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 3,500  | 393          | 228   | 4,121  | 3,428                | 378   | 116   | 3,923  | -199 | -4.8%             | $\checkmark$ |  |
| 11 | Hoylake to West Kirby    | Dir 1 (IB) | 3,181  | 355          | 197   | 3,733  | 3,173                | 355   | 173   | 3,701  | -32  | -0.9%             | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 6,060  | 676          | 371   | 7,108  | 6,049                | 658   | 328   | 7,034  | -74  | -1.0%             | $\checkmark$ |  |
| 12 | West Kirby               | Dir 1 (IB) | 1,619  | 188          | 123   | 1,929  | 1,503                | 159   | 98    | 1,760  | -170 | -8.8%             | x            |  |
|    |                          | Dir 2 (OB) | 1,406  | 161          | 101   | 1,669  | 1,421                | 152   | 94    | 1,667  | -2   | -0.1%             | $\checkmark$ |  |
| 13 | Heswall                  | Dir 1 (IB) | 2,402  | 268          | 146   | 2,816  | 2,406                | 260   | 76    | 2,742  | -74  | -2.6%             | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 1,781  | 199          | 109   | 2,090  | 1,765                | 195   | 56    | 2,016  | -74  | -3.5%             | $\checkmark$ |  |



### Table 5.8: Cordon Summary Table – Average IP Hour

|    | Cordon / Screenline      |            | Obser | ved Flow (F | PCUs) |       | Modelled Flow (PCUs) Compari |       |       |       | arison (PCUs) | Criteria |              |
|----|--------------------------|------------|-------|-------------|-------|-------|------------------------------|-------|-------|-------|---------------|----------|--------------|
|    |                          | Dir        | Car   | LGV         | OGV   | Total | Car                          | LGV   | OGV   | Total | Diff          | % Diff   | Flow<5%      |
| 1  | Birkenhead Inner         | Dir 1(IB)  | 4,808 | 820         | 376   | 6,005 | 4,857                        | 802   | 335   | 5,994 | -11           | -0.2%    | $\checkmark$ |
|    |                          | Dir 2 (OB) | 4,935 | 827         | 385   | 6,147 | 4,987                        | 813   | 349   | 6,148 | 2             | 0.0%     | $\checkmark$ |
| 2  | Birkenhead Outer         | Dir 1 (IB) | 7,324 | 1,102       | 880   | 9,305 | 7,313                        | 1,107 | 978   | 9,398 | 93            | 1.0%     | $\checkmark$ |
|    |                          | Dir 2 (OB) | 7,484 | 1,118       | 925   | 9,527 | 7,373                        | 1,075 | 984   | 9,431 | -96           | -1.0%    | $\checkmark$ |
| 3  | Wirral - West of M53     | Dir 1 (IB) | 6,706 | 864         | 610   | 8,180 | 6,769                        | 855   | 621   | 8,246 | 66            | 0.8%     | $\checkmark$ |
|    |                          | Dir 2 (OB) | 6,638 | 876         | 636   | 8,150 | 6,514                        | 892   | 686   | 8,091 | -59           | -0.7%    | $\checkmark$ |
| 4  | Wirral South East        | Dir 1 (IB) | 4,307 | 611         | 404   | 5,321 | 4,413                        | 617   | 385   | 5,416 | 95            | 1.8%     | $\checkmark$ |
|    |                          | Dir 2 (OB) | 4,313 | 608         | 418   | 5,339 | 4,335                        | 628   | 384   | 5,346 | 8             | 0.1%     | $\checkmark$ |
| 5  | River Crossings          | Dir 1 (IB) | 3,461 | 660         | 1,113 | 5,234 | 3,469                        | 659   | 1,113 | 5,240 | 6             | 0.1%     | $\checkmark$ |
|    |                          | Dir 2 (OB) | 3,358 | 607         | 1,122 | 5,087 | 3,386                        | 605   | 1,119 | 5,111 | 23            | 0.5%     | $\checkmark$ |
| 6  | Wirral Dock Crossings    | Dir 1 (IB) | 1,241 | 221         | 164   | 1,625 | 1,231                        | 218   | 165   | 1,614 | -11           | -0.7%    | $\checkmark$ |
|    |                          | Dir 2 (OB) | 1,136 | 212         | 150   | 1,498 | 1,136                        | 212   | 152   | 1,500 | 2             | 0.1%     | $\checkmark$ |
| 7  | North of Kingsway Tunnel | Dir 1 (IB) | 2,447 | 359         | 239   | 3,044 | 2,441                        | 354   | 236   | 3,032 | -13           | -0.4%    | $\checkmark$ |
|    |                          | Dir 2 (OB) | 2,530 | 370         | 229   | 3,129 | 2,450                        | 360   | 197   | 3,007 | -122          | -3.9%    | $\checkmark$ |
| 8  | Birkenhead TC South      | Dir 1 (IB) | 2,251 | 308         | 119   | 2,678 | 2,251                        | 309   | 147   | 2,708 | 30            | 1.1%     | $\checkmark$ |
|    |                          | Dir 2 (OB) | 2,108 | 290         | 121   | 2,520 | 2,109                        | 290   | 153   | 2,552 | 33            | 1.3%     | $\checkmark$ |
| 9  | Mid-Wirral EW            | Dir 1 (IB) | 4,647 | 643         | 853   | 6,144 | 4,625                        | 636   | 804   | 6,064 | -79           | -1.3%    | $\checkmark$ |
|    |                          | Dir 2 (OB) | 4,696 | 652         | 874   | 6,222 | 4,645                        | 625   | 795   | 6,064 | -158          | -2.5%    | $\checkmark$ |
| 10 | Mid-Wirral NS            | Dir 1 (IB) | 2,739 | 359         | 220   | 3,317 | 2,762                        | 362   | 169   | 3,293 | -24           | -0.7%    | $\checkmark$ |
|    |                          | Dir 2 (OB) | 2,826 | 363         | 213   | 3,402 | 2,803                        | 364   | 143   | 3,311 | -91           | -2.7%    | $\checkmark$ |
| 11 | Hoylake to West Kirby    | Dir 1 (IB) | 2,019 | 279         | 185   | 2,483 | 2,016                        | 260   | 201   | 2,477 | -6            | -0.3%    | $\checkmark$ |
|    |                          | Dir 2 (OB) | 4,038 | 557         | 370   | 4,964 | 4,036                        | 523   | 375   | 4,934 | -30           | -0.6%    | $\checkmark$ |
| 12 | West Kirby               | Dir 1 (IB) | 1,097 | 162         | 124   | 1,384 | 1,091                        | 155   | 108   | 1,355 | -29           | -2.1%    | $\checkmark$ |
|    |                          | Dir 2 (OB) | 1,053 | 154         | 116   | 1,323 | 1,057                        | 144   | 111   | 1,311 | -12           | -0.9%    | $\checkmark$ |
| 13 | Heswall                  | Dir 1 (IB) | 1,603 | 220         | 144   | 1,967 | 1,605                        | 217   | 79    | 1,900 | -66           | -3.4%    | $\checkmark$ |
|    |                          | Dir 2 (OB) | 1,376 | 186         | 117   | 1,678 | 1,379                        | 185   | 69    | 1,633 | -45           | -2.7%    | $\checkmark$ |



### Table 5.9: Cordon Summary Table – PM Peak Hour

|    | Cordon / Screenline      |            | Obse   | rved Flow (F | PCUs) |        | Modelled Flow (PCUs) |       |     |        | Comp | Comparison (PCUs) |              |  |
|----|--------------------------|------------|--------|--------------|-------|--------|----------------------|-------|-----|--------|------|-------------------|--------------|--|
|    |                          | Dir        | Car    | LGV          | OGV   | Total  | Car                  | LGV   | OGV | Total  | Diff | % Diff            | Flow<5%      |  |
| 1  | Birkenhead Inner         | Dir 1(IB)  | 6,193  | 538          | 133   | 6,864  | 6,258                | 593   | 98  | 6,949  | 85   | 1.2%              | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 8,983  | 696          | 111   | 9,790  | 9,032                | 771   | 86  | 9,890  | 100  | 1.0%              | $\checkmark$ |  |
| 2  | Birkenhead Outer         | Dir 1 (IB) | 10,596 | 895          | 400   | 11,891 | 10,829               | 985   | 449 | 12,262 | 371  | 3.1%              | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 13,074 | 1,070        | 492   | 14,636 | 12,346               | 1,134 | 421 | 13,901 | -734 | -5.0%             | $\checkmark$ |  |
| 3  | Wirral - West of M53     | Dir 1 (IB) | 11,681 | 860          | 231   | 12,771 | 11,466               | 867   | 258 | 12,591 | -181 | -1.4%             | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 8,859  | 740          | 224   | 9,823  | 8,617                | 699   | 219 | 9,535  | -288 | -2.9%             | $\checkmark$ |  |
| 4  | Wirral South East        | Dir 1 (IB) | 7,480  | 636          | 128   | 8,244  | 7,446                | 686   | 118 | 8,250  | 6    | 0.1%              | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 6,570  | 516          | 200   | 7,286  | 6,575                | 528   | 138 | 7,241  | -45  | -0.6%             | $\checkmark$ |  |
| 5  | River Crossings          | Dir 1 (IB) | 6,298  | 624          | 462   | 7,384  | 6,229                | 634   | 427 | 7,290  | -94  | -1.3%             | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 6,875  | 480          | 448   | 7,804  | 6,981                | 576   | 451 | 8,008  | 205  | 2.6%              | $\checkmark$ |  |
| 6  | Wirral Dock Crossings    | Dir 1 (IB) | 2,076  | 166          | 39    | 2,280  | 2,067                | 152   | 48  | 2,267  | -14  | -0.6%             | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 1,248  | 128          | 39    | 1,415  | 1,377                | 133   | 34  | 1,543  | 128  | 9.1%              | x            |  |
| 7  | North of Kingsway Tunnel | Dir 1 (IB) | 3,044  | 246          | 80    | 3,370  | 2,925                | 229   | 83  | 3,237  | -132 | -3.9%             | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 4,339  | 353          | 103   | 4,795  | 4,339                | 349   | 115 | 4,802  | 7    | 0.2%              | $\checkmark$ |  |
| 8  | Birkenhead TC South      | Dir 1 (IB) | 2,476  | 292          | 63    | 2,832  | 2,488                | 283   | 63  | 2,835  | 3    | 0.1%              | ✓            |  |
|    |                          | Dir 2 (OB) | 3,850  | 422          | 70    | 4,343  | 3,765                | 392   | 67  | 4,224  | -119 | -2.7%             | $\checkmark$ |  |
| 9  | Mid-Wirral EW            | Dir 1 (IB) | 7,991  | 904          | 617   | 9,513  | 7,947                | 885   | 581 | 9,413  | -99  | -1.0%             | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 6,991  | 744          | 461   | 8,197  | 6,914                | 746   | 434 | 8,094  | -103 | -1.3%             | $\checkmark$ |  |
| 10 | Mid-Wirral NS            | Dir 1 (IB) | 3,570  | 293          | 100   | 3,963  | 3,662                | 264   | 58  | 3,984  | 21   | 0.5%              | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 4,854  | 383          | 99    | 5,337  | 4,645                | 370   | 40  | 5,055  | -281 | -5.3%             | x            |  |
| 11 | Hoylake to West Kirby    | Dir 1 (IB) | 2,678  | 212          | 64    | 2,954  | 2,730                | 194   | 53  | 2,977  | 23   | 0.8%              | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 5,866  | 465          | 136   | 6,467  | 5,913                | 448   | 108 | 6,469  | 3    | 0.0%              | $\checkmark$ |  |
| 12 | West Kirby               | Dir 1 (IB) | 1,389  | 109          | 40    | 1,539  | 1,382                | 107   | 41  | 1,529  | -9   | -0.6%             | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 1,428  | 112          | 40    | 1,580  | 1,397                | 97    | 29  | 1,523  | -57  | -3.6%             | $\checkmark$ |  |
| 13 | Heswall                  | Dir 1 (IB) | 2,116  | 168          | 51    | 2,335  | 2,125                | 160   | 26  | 2,312  | -22  | -1.0%             | $\checkmark$ |  |
|    |                          | Dir 2 (OB) | 2,121  | 168          | 46    | 2,335  | 2,130                | 170   | 25  | 2,325  | -10  | -0.4%             | $\checkmark$ |  |



## 6 Model Validation

### 6.1 Independent Traffic Flow Validation

An independent traffic flow validation has been undertaken utilising available traffic counts that have not been included in model calibration.

A total of 20 link counts have been included in the data-set. Table 6.1 shows a validation summary comparison for individual links. Figure 6.1 shows the location of the validation sites and Appendix H presents the results.

Comparison between observed and modelled flows using the TAG GEH less than 5 criteria show that the validation result is 75% (15 links) for AM and IP, and 70% (14 links) in the PM. When compared to the TAG flow difference criteria, the AM, IP and PM time periods achieve a validation result of 70% (14 links), 85% (17 links) and 75% (15 links).

It is evident that the results are close to the TAG recommendation that 85% of all link comparisons should exceed the specified criteria.

### Table 6.1: Link Flow Validation Summary

|             |              | TAG GEH<5 cr     | riteria    | TAG flow difference criteria |              |  |
|-------------|--------------|------------------|------------|------------------------------|--------------|--|
| Time Period | Total Counts | Number of counts | Percentage | Time Period                  | Total Counts |  |
| AM Peak     | 20           | 15               | 75%        | 14                           | 70%          |  |
| Inter Peak  | 20           | 15               | 75%        | 17                           | 85%          |  |
| PM Peak     | 20           | 14               | 70%        | 15                           | 75%          |  |



### Figure 6.1: Validation Sites



350170/ITD/ITN/1/A 07 April 2016

\mottmac\project\Liverpool\ITD\MISData\Modelling\WirralModel\WP5-BaseYearAssignments\WP5a-Documents\Wirral\_2015\_Model\_Rebase\_LMVR\_RevA\_Draft\_v2.docx

31



### 6.2 Journey Time Validation

Journey time routes have been defined to compare observed and modelled journey times along the key routes throughout the model study area. Reference should be made to Figure 6.2 which shows the location of journey time routes.

The sixteen routes (two-way directional routes) are listed below;

- 1 A551 Leasowe Road to Hamilton Square (A551 / B5145 / A5088 / A5030);
- 2 Grove Road to A553 Park Road North (A5027);
- 3 A554 Kings Parade to A552 Borough Road (A554 / A5029);
- 4 A553 Fender Lane to A552 Argyle Street (A553);
- 5 A554 Tower Road to A41 New Chester Road (A554 / A41);
- 6 Nocturum Avenue to A5027 Duke Street (A5027);
- 7 M53 J5 to A59 Scotland Road (M53 / A59 / Kingsway Tunnel);
- 8 M53 J5 to A552 Singleton Avenue (M53 / B5161);
- 9 M53 J5 to Byrom Street (A41 / Queensway Tunnel);
- 10 M53 J3 to Byrom Street (A552);
- 11 Borough Road corridor (from Broadway to Conway Street);
- 12 Church Road corridor (from Broadway to Conway Street);
- 13 Hoylake Road between A554/ A553 Roundabout to A540 Telegraph Road / B5140 Caldy Road
- 14 Arrowe Park Road between A551 / A553 Roundabout and M53 Junction 3
- 15 Saughall Massie Road between A540 Hilbre View / B5130 Black Horse Hill and A5027 / A551 Roundabout
- 16 Frankby Road between B5192 Black Horse Hill / B5139 Frankby Road to M53 Junction 2A

The overall journey time route validation performance is shown in Table 6.2.

Comparisons between observed and modelled journey times using the TAG time difference criteria (within 15% or 1 min if higher) show that the each time period achieves 100% (32 routes) validation. TAG recommends that 85% of compared routes should validate according to this criterion.

### Table 6.2: Journey Time Validation Summary

32

|             |              | TAG Time difference criteria (within 15 | nin 15% or 1 minute) |  |
|-------------|--------------|-----------------------------------------|----------------------|--|
| Time Period | Total Routes | Number of Routes                        | Percentage           |  |
| AM Peak     | 32           | 32                                      | 100%                 |  |
| Inter Peak  | 32           | 32                                      | 100%                 |  |
| PM Peak     | 32           | 32                                      | 100%                 |  |

Reference should be made to Table 6.3 to Table 6.5 which shows journey time results by time period.

Local Model Validation Report



### Figure 6.2: Location of Journey Time Routes





### Table 6.3: Journey Time Validation – Route Summary - AM Peak Hour

|    | Route Name                               | Dir | Observed<br>(mins) | Modelled<br>(mins) | Difference<br>(mins) | Percentage<br>Difference | Validation within 15% |
|----|------------------------------------------|-----|--------------------|--------------------|----------------------|--------------------------|-----------------------|
| 4  | AFF1 Lassaure Decidite Llargilter Course | EB  | 14.1               | 12.7               | 1.4                  | 10%                      | Pass                  |
|    | ASST Leasowe Road to Hamilton Square     | WB  | 11.5               | 11.5               | 0.0                  | 0%                       | Pass                  |
| 2  | Crove Read to AFE? Park Read North       | SB  | 11.7               | 10.2               | 1.5                  | 13%                      | Pass                  |
| 2  | Grove hoad to ASSS Faik hoad North       | NB  | 11.6               | 10.0               | 1.6                  | 14%                      | Pass                  |
| 3  | 4554 Kings Parade to 4552 Borough Rd     | SB  | 15.0               | 13.8               | 1.2                  | 8%                       | Pass                  |
|    | A334 Kings Parade to A332 borough hu     | NB  | 14.2               | 13.2               | 0.9                  | 7%                       | Pass                  |
| 4  | A553 Fender Lane to A552 Arayle Street   | EB  | 11.9               | 12.0               | -0.1                 | -1%                      | Pass                  |
| 4  | Add I ender Lane to Addz Algyle Street   | WB  | 10.8               | 11.1               | -0.3                 | -3%                      | Pass                  |
| 5  | 4554 Tower Boad to 441 New Chester Boad  | SB  | 3.5                | 3.8                | -0.3                 | -9%                      | Pass                  |
|    | Abor Tower Hoad to Art New Orester Hoad  | NB  | 3.7                | 3.9                | -0.3                 | -7%                      | Pass                  |
| 6  | Nocturum Avenue to 45027 Duke Street     | EB  | 8.1                | 6.9                | 1.2                  | 15%                      | Pass                  |
| 0  | Nocial and Avenue to ASO27 Dake Street   | WB  | 7.1                | 6.8                | 0.3                  | 4%                       | Pass                  |
| 7  | M53 15 to 459 Scotland Road              | NEB | 19.6               | 20.3               | -0.6                 | -3%                      | Pass                  |
|    |                                          | SWB | 20.0               | 20.3               | -0.2                 | -1%                      | Pass                  |
| Q  | M53 15 to 4552 Singlaton Avenue          | NB  | 13.2               | 13.7               | -0.5                 | -4%                      | Pass                  |
| 0  | W35 05 to A552 Singleton Avenue          | SB  | 15.4               | 14.8               | 0.6                  | 4%                       | Pass                  |
| ٥  | M53 15 to Byrom Street Boundabout        | NEB | 23.3               | 23.6               | -0.4                 | -2%                      | Pass                  |
|    |                                          | SWB | 19.6               | 21.5               | -1.9                 | -10%                     | Pass                  |
| 10 | M53 13 to Byrom Street Boundabout        | NEB | 18.6               | 17.8               | 0.7                  | 4%                       | Pass                  |
| 10 | M33 33 to Byrom Street Houndabout        | SWB | 15.6               | 16.0               | -0.5                 | -3%                      | Pass                  |
| 11 | Borough Boad Corridor                    | NB  | 9.8                | 9.3                | 0.5                  | 5%                       | Pass                  |
|    |                                          | SB  | 8.1                | 8.0                | 0.1                  | 1%                       | Pass                  |
| 12 | Church Boad Corridor                     | NB  | 7.6                | 7.1                | 0.5                  | 7%                       | Pass                  |
| 12 |                                          | SB  | 6.8                | 6.2                | 0.6                  | 10%                      | Pass                  |
| 12 | Hovlake Boad                             | NB  | 21.4               | 19.6               | 1.8                  | 9%                       | Pass                  |
|    | Hoylane Hoad                             | SB  | 21.5               | 19.1               | 2.4                  | 11%                      | Pass                  |
| 14 | Arrowe Park Road                         | WB  | 12.9               | 12.4               | 0.6                  | 4%                       | Pass                  |

350170/ITD/ITN/1/A 07 April 2016 \\mottmac\project\Liverpool\ITD\MISData\Modelling\WirralModel\WP5-BaseYearAssignments\WP5a-Documents\Wirral\_2015\_Model\_Rebase\_LMVR\_RevA\_Draft\_v2.docx 34

Local Model Validation Report



|    | Route Name            | Dir | Observed<br>(mins) | Modelled<br>(mins) | Difference<br>(mins) | Percentage<br>Difference | Validation<br>within 15% |
|----|-----------------------|-----|--------------------|--------------------|----------------------|--------------------------|--------------------------|
|    |                       | EB  | 12.7               | 12.1               | 0.6                  | 4%                       | Pass                     |
|    | Courteall Manaia Dand | EB  | 9.3                | 8.5                | 0.9                  | 10%                      | Pass                     |
| 15 | Saugnali Massie Road  | WB  | 9.5                | 8.8                | 0.8                  | 8%                       | Pass                     |
| 16 | Frankby Road          | EB  | 10.3               | 10.3               | 0.0                  | 0%                       | Pass                     |
|    |                       | WB  | 10.6               | 10.2               | 0.4                  | 3%                       | Pass                     |

Local Model Validation Report

### Table 6.4: Journey Time Validation – Route Summary – Average IP Hour

|      | Route Name                              | Dir       | Observed | Modelled | Difference<br>(mins) | Percentage | Validation |
|------|-----------------------------------------|-----------|----------|----------|----------------------|------------|------------|
|      |                                         |           | (11113)  | (11113)  | (11113)              |            | Dees       |
| 1    | A551 Leasowe Road to Hamilton Square    | <u>EB</u> | 11.3     | 10.5     | 0.8                  |            | Pass       |
|      |                                         | WB        | 10.9     | 10.5     | 0.4                  |            | Pass       |
| 2    | Grove Road to A553 Park Road North      | SB        | 9.2      | 9.3      | -0.1                 | -1%        | Pass       |
|      |                                         | NB        | 9.1      | 9.4      | -0.3                 | -3%        | Pass       |
| 3    | A554 Kings Parade to A552 Borough Rd    | SB        | 14.3     | 13.5     | 0.8                  | 5%         | Pass       |
|      |                                         | NB        | 13.9     | 13.3     | 0.6                  | 5%         | Pass       |
| 4    | A553 Fender Lane to A552 Argyle Street  | EB        | 11.2     | 11.5     | -0.3                 | -3%        | Pass       |
|      |                                         | WB        | 11.1     | 11.3     | -0.2                 | -2%        | Pass       |
| 5 A5 | A554 Tower Road to A41 New Chester Road | SB        | 3.2      | 3.5      | -0.2                 | -7%        | Pass       |
|      |                                         | NB        | 3.3      | 3.7      | -0.4                 | -13%       | Pass       |
| 6    | Nocturum Avenue to A5027 Duke Street    | EB        | 7.1      | 6.3      | 0.9                  | 12%        | Pass       |
|      |                                         | WB        | 6.8      | 6.6      | 0.2                  | 4%         | Pass       |
| 7    | M53 J5 to A59 Scotland Boad             | NEB       | 17.2     | 17.8     | -0.6                 | -4%        | Pass       |
|      |                                         | SWB       | 16.8     | 17.9     | -1.1                 | -7%        | Pass       |
| 8    | M53 15 to 4552 Singleton Avenue         | NB        | 11.6     | 11.8     | -0.2                 | -1%        | Pass       |
| 0    |                                         | SB        | 11.2     | 11.2     | 0.0                  | 0%         | Pass       |
| 0    | M52 15 to Byrom Street Boundabout       | NEB       | 20.4     | 20.4     | 0.0                  | 0%         | Pass       |
| 9    | NISS 35 to Byrom Street Roundabout      | SWB       | 19.2     | 20.5     | -1.3                 | -7%        | Pass       |
| 10   | MEQ. 12 to Durom Street Doundabout      | NEB       | 15.2     | 15.6     | -0.3                 | -2%        | Pass       |
| 10   |                                         | SWB       | 15.0     | 15.2     | -0.2                 | -1%        | Pass       |
|      | Demonski De ed Osmiden                  | NB        | 7.7      | 8.0      | -0.3                 | -5%        | Pass       |
| 11   | Borougn Road Corridor                   | SB        | 7.3      | 7.5      | -0.3                 | -4%        | Pass       |
| 10   | Obumb David Opmidan                     | NB        | 6.0      | 6.0      | 0.1                  | 1%         | Pass       |
| 12   | Church Road Corridor                    | SB        | 5.9      | 5.8      | 0.2                  | 3%         | Pass       |
| 10   |                                         | NB        | 20.3     | 18.2     | 2.1                  | 10%        | Pass       |
| 13   | Hoylake Road                            | SB        | 19.9     | 18.1     | 1.8                  | 9%         | Pass       |
|      |                                         | WB        | 11.2     | 11.1     | 0.1                  | 1%         | Pass       |
| 14   | Arrowe Park Road                        | EB        | 10.5     | 10.4     | 0.1                  | 1%         | Pass       |

350170/ITD/ITN/1/A 07 April 2016 \\mottmac\project\Liverpool\ITD\MISData\Modelling\WirralModel\WP5-BaseYearAssignments\WP5a-Documents\Wirral\_2015\_Model\_Rebase\_LMVR\_RevA\_Draft\_v2.docx 36



Local Model Validation Report



|    | Route Name           | Dir | Observed<br>(mins) | Modelled<br>(mins) | Difference<br>(mins) | Percentage<br>Difference | Validation within 15% |
|----|----------------------|-----|--------------------|--------------------|----------------------|--------------------------|-----------------------|
| 15 | Soughall Maggia Bood | EB  | 7.7                | 7.2                | 0.5                  | 6%                       | Pass                  |
| 15 | Saughali Massie Road | WB  | 8.0                | 7.7                | 0.3                  | 4%                       | Pass                  |
| 16 | Frankhy Daad         | EB  | 9.1                | 8.6                | 0.5                  | 6%                       | Pass                  |
|    |                      | WB  | 9.2                | 9.0                | 0.2                  | 2%                       | Pass                  |

Local Model Validation Report

### Table 6.5: Journey Time Validation – Route Summary - PM Peak Hour

|           | Route Name                              | Dir       | Observed<br>(mins) | Modelled<br>(mins) | Difference<br>(mins) | Percentage<br>Difference | Validation<br>within 15% |
|-----------|-----------------------------------------|-----------|--------------------|--------------------|----------------------|--------------------------|--------------------------|
|           |                                         |           | 11.0               | 10.1               | 1.1                  | Difference<br>0%         | Deep                     |
| 1         | A551 Leasowe Road to Hamilton Square    |           | 11.2               | 10.1               | 1.1                  | <u> </u>                 | Pass                     |
|           |                                         |           | 13.2               | 12.3               | 1.0                  | 1%                       | Pass                     |
| 2         | Grove Road to A553 Park Road North      |           | 9.6                | 9.6                | 0.0                  | 0%                       | Pass                     |
|           |                                         | NB<br>CD  | 11.0               | 10.5               | 0.5                  | 4%                       | Pass                     |
| 3         | A554 Kings Parade to A552 Borough Rd    | <u></u>   | 15.0               | 13.8               | 1.2                  | 8%                       | Pass                     |
|           |                                         |           | 14.8               | 13.7               | 1.1                  | 1%                       | Pass                     |
| 4         | A553 Fender Lane to A552 Argyle Street  | EB        | 12.7               | 12.7               | 0.0                  | 0%                       | Pass                     |
|           |                                         |           | 12.9               | 12.1               | 0.8                  | 6%                       | Pass                     |
| 5 A554 To | A554 Tower Road to A41 New Chester Road | SB        | 3.6                | 4.0                | -0.4                 | -10%                     | Pass                     |
|           |                                         | NB        | 3.9                | 4.2                | -0.3                 | -9%                      | Pass                     |
| 6         | Nocturum Avenue to A5027 Duke Street    | EB        | 7.3                | 6.3                | 1.0                  | 14%                      | Pass                     |
|           |                                         | VB        | 8.1                | 7.5                | 0.6                  | 7%                       | Pass                     |
| 7         | M53 J5 to A59 Scotland Road             | NEB       | 20.2               | 19.3               | 0.9                  | 5%                       | Pass                     |
|           |                                         | SWB       | 19.9               | 20.1               | -0.3                 | -1%                      | Pass                     |
| 8         | M53 J5 to A552 Singleton Avenue         | <u>NB</u> | 13.4               | 13.0               | 0.3                  | 2%                       | Pass                     |
|           |                                         | SB        | 11.9               | 12.2               | -0.4                 | -3%                      | Pass                     |
| 9         | M53 J5 to Byrom Street Roundabout       | NEB       | 22.7               | 21.1               | 1.6                  | 7%                       | Pass                     |
|           |                                         | SWB       | 20.9               | 22.6               | -1.8                 | -8%                      | Pass                     |
| 10        | M53 J3 to Byrom Street Roundabout       | NEB       | 18.4               | 16.9               | 1.5                  | 8%                       | Pass                     |
|           |                                         | SWB       | 16.5               | 16.4               | 0.1                  | 1%                       | Pass                     |
| 11        | Borough Road Corridor                   | NB        | 8.3                | 8.3                | 0.1                  | 1%                       | Pass                     |
|           |                                         | SB        | 8.2                | 7.9                | 0.3                  | 4%                       | Pass                     |
| 12        | Church Road Corridor                    | NB        | 6.6                | 6.2                | 0.4                  | 6%                       | Pass                     |
|           |                                         | SB        | 6.6                | 6.3                | 0.3                  | 4%                       | Pass                     |
| 13        | Hoylake Road                            | NB        | 21.1               | 20.8               | 0.3                  | 1%                       | Pass                     |
|           |                                         | SB        | 19.6               | 17.8               | 1.7                  | 9%                       | Pass                     |
| 14        | Arrowe Park Road                        | WB        | 13.0               | 12.1               | 0.9                  | 7%                       | Pass                     |
| 14        |                                         | EB        | 13.3               | 12.0               | 1.3                  | 10%                      | Pass                     |

350170/ITD/ITN/1/A 07 April 2016 \\mottmac\project\Liverpool\ITD\MISData\Modelling\WirralModel\WP5-BaseYearAssignments\WP5a-Documents\Wirral\_2015\_Model\_Rebase\_LMVR\_RevA\_Draft\_v2.docx 38



Local Model Validation Report



|    | Route Name           | Dir | Observed<br>(mins) | Modelled<br>(mins) | Difference<br>(mins) | Percentage<br>Difference | Validation<br>within 15% |
|----|----------------------|-----|--------------------|--------------------|----------------------|--------------------------|--------------------------|
| 45 | Saughall Massia Poad | EB  | 7.8                | 7.3                | 0.6                  | 7%                       | Pass                     |
| 15 |                      | WB  | 9.5                | 9.2                | 0.3                  | 3%                       | Pass                     |
| 16 | Frenkhy Deed         | EB  | 10.3               | 9.0                | 1.2                  | 12%                      | Pass                     |
|    |                      | WB  | 10.2               | 10.4               | -0.2                 | -2%                      | Pass                     |



## 7 Conclusion

An update and extension of the East Wirral Traffic Model has been undertaken to extend the detailed model area over the entire Wirral district. The new Wirral Traffic Model now provides a good representation of observed traffic conditions for a 2015 base year over the entire district.

The traffic flow calibration results for all time periods show that the model exceeds the TAG recommended threshold of 85% of links achieving a flow difference of GEH less than 5. The results achieved for the AM, IP and PM time periods are 94%, 98% and 97%, respectively.

The calibration cordon / screenline summary shows that all time periods achieve a good correspondence to TAG flow difference criteria (less than 5%) with the AM, IP and PM achieving 96%, 100%, and 92%, respectively.

Comparison of journey times, for the AM, IP and PM time periods, show that the model achieves a 100% match against TAG time difference criteria for all time periods (within 15% or 1 minute if higher).

The validation summary shows the AM, IP and PM time periods achieve a 75%, 75% and 70% match against the TAG flow difference threshold (GEH < 5). There is a lack of suitable count data available for validation. Therefore, we would suggest that the commission of a new set of traffic counts is considered to improve this aspect of the model.

The 2015 base year model performance demonstrates that the model is a suitable platform for the development of future year traffic models to support the following requirements:

- prediction of future congestion levels and the subsequent impact on network operation;
- detailed assessment of highway impacts associated with proposed land use developments and transport policy changes; and also
- to assess the impacts of major highway improvement schemes.

The model has been calibrated across set of cordons and screenlines which cover Wirral district. However for more detailed model applications we would recommend that localised calibration and validation is considered, with the collection of additional data to support this activity and as consistent with good modelling practice.



## Appendices

| Appendix A. | Traffic Survey Commission   | 42  |
|-------------|-----------------------------|-----|
| Appendix B. | Network Development         | 45  |
| Appendix C. | Matrix Build                | 52  |
| Appendix D. | Model Assignment Statistics | 63  |
| Appendix E. | Flow Calibration AM         | 64  |
| Appendix F. | Flow Calibration IP         | 72  |
| Appendix G. | Flow Calibration PM         | 80  |
| Appendix H. | Traffic Count Validation    | 88  |
| Appendix I. | Journey Time Validation     | 92  |
| Appendix J. | Impact of Matrix Estimation | 104 |
|             |                             |     |



# Appendix A. Traffic Survey Commission

| ATC<br>Count<br>Ref | Existing<br>Ref | Road Name                 | Survey<br>Type | Month | Year | Commission   |
|---------------------|-----------------|---------------------------|----------------|-------|------|--------------|
| 1                   | 22              | A554 Bayswater Road       | ATC            | July  | 2015 | Wirral - WTM |
| 2                   | 23              | A551 Leasowe Road         | ATC            | June  | 2015 | Wirral - WTM |
| 3                   | 1               | A554 near M53 Junction 1  | ATC            | July  | 2015 | Wirral - WTM |
| 4                   | 0               | A551 Pasture Road         | ATC            | June  | 2015 | Wirral - WTM |
| 5                   | 2               | A553 Fender Lane          | ATC            | June  | 2015 | Wirral - WTM |
| 6                   | 12              | Eastham Rake              | ATC            | July  | 2015 | Wirral - WTM |
| 7                   | 13              | A41 New Chester Road      | ATC            | July  | 2015 | Wirral - WTM |
| 8                   | 0               | A551 Barnston Road        | ATC            | June  | 2015 | Wirral - WTM |
| 9                   | 0               | B5138 Pensby Road         | ATC            | June  | 2015 | Wirral - WTM |
| 10                  | 0               | Irby Road                 | ATC            | June  | 2015 | Wirral - WTM |
| 11                  | 21              | A540 Telegraph Road       | ATC            | July  | 2015 | Wirral - WTM |
| 12                  | 19              | B5140 Montgomery Hill     | ATC            | July  | 2015 | Wirral - WTM |
| 13                  | 20              | B5139 Frankby Road        | ATC            | July  | 2015 | Wirral - WTM |
| 14                  | 18              | B5192 Saugall Massie Road | ATC            | June  | 2015 | Wirral - WTM |
| 15                  | 17              | A553 Hoylake Road         | ATC            | July  | 2015 | Wirral - WTM |
| 16                  | 0               | A553 Birkenhead Road      | ATC            | June  | 2015 | Wirral - WTM |
| 17                  | 0               | A553 Market Street        | ATC            | July  | 2015 | Wirral - WTM |
| 18                  | 0               | A540 Meols Drive          | ATC            | July  | 2015 | Wirral - WTM |
| 19                  | 0               | A540 Meols Drive          | ATC            | July  | 2015 | Wirral - WTM |
| 20                  | 0               | Orrysdale Road            | ATC            | July  | 2015 | Wirral - WTM |
| 21                  | 0               | Darmonds Green            | ATC            | June  | 2015 | Wirral - WTM |
| 22                  | 0               | B5139 Black Horse Hill    | ATC            | July  | 2015 | Wirral - WTM |
| 23                  | 0               | A540 Column Road          | ATC            | July  | 2015 | Wirral - WTM |
| 24                  | 211             | A41 New Chester Road      | ATC            | June  | 2015 | Wirral - WTM |
| 25                  | 210             | B5149 Old Chester Road    | ATC            | July  | 2015 | Wirral - WTM |
| 26                  | 225             | Derby Road                | ATC            | July  | 2015 | Wirral - WTM |
| 27                  | 208             | A552 Borough Road         | ATC            | June  | 2015 | Wirral - WTM |
| 28                  | 206             | Park Road South           | ATC            | July  | 2015 | Wirral - WTM |
| 29                  | 205             | A5027 Park Road North     | ATC            | July  | 2015 | Wirral - WTM |
| 30                  | 204             | A553 Laird Street         | ATC            | July  | 2015 | Wirral - WTM |
| 31                  | 203             | A5030 Beaufort Road       | ATC            | July  | 2015 | Wirral - WTM |
| 32                  | 202             | A5027 Duke Street         | ATC            | June  | 2015 | Wirral - WTM |

### Table A.1: ATC Traffic Survey Commission (2015)

42

350170/ITD/ITN/1/A 07 April 2016 \\mottmac\project\Liverpool\ITD\MISData\Modelling\WirralModel\WP5-BaseYearAssignments\WP5a-Documents\Wirral\_2015\_Model\_Reba



| ATC<br>Count<br>Ref | Existing<br>Ref | Road Name                           | Survey<br>Type | Me   | onth | Year | Commission   |
|---------------------|-----------------|-------------------------------------|----------------|------|------|------|--------------|
| 33                  | 201             | A554 Tower Road                     | ATC            | June | 2015 |      | Wirral - WTM |
| 34                  | 212             | A554 Seabank Road                   | ATC            | June | 2015 |      | Wirral - WTM |
| 35                  | 213             | B5143 Rake Lane                     | ATC            | June | 2015 |      | Wirral - WTM |
| 36                  | 216             | A551 Wallasey Village               | ATC            | June | 2015 |      | Wirral - WTM |
| 37                  | 217             | A5139 Wallasey Dock Link Road       | ATC            | June | 2015 |      | Wirral - WTM |
| 38                  | 226             | A5088 Wallasey Bridge Road          | ATC            | July | 2015 |      | Wirral - WTM |
| 39                  | 16              | A554                                | ATC            | June | 2015 |      | Wirral - WTM |
| 40                  | 218             | A553 Hoylake Road                   | ATC            | June | 2015 |      | Wirral - WTM |
| 41                  | 219             | A5027 Upton Bypass                  | ATC            | July | 2015 |      | Wirral - WTM |
| 42                  | 221             | A552 Woodchurch Road                | ATC            | July | 2015 |      | Wirral - WTM |
| 43                  | 222             | B5151 Storeton Road                 | ATC            | July | 2015 |      | Wirral - WTM |
| 44                  | 223             | Borough Road                        | ATC            | June | 2015 |      | Wirral - WTM |
| 45                  | 209             | B5148 Church Road                   | ATC            | July | 2015 |      | Wirral - WTM |
| 46                  | 0               | A5137 Brimstage Road                | ATC            | July | 2015 |      | Wirral - WTM |
| 47                  | 0               | B5151 Mount Road<br>(Clatterbridge) | ATC            | June | 2015 |      | Wirral - WTM |
| 48                  | 0               | A41 New Chester Road                | ATC            | June | 2015 |      | Wirral - WTM |
| 49                  | 0               | A540 Chester High Road              | ATC            | June | 2015 |      | Wirral - WTM |
| 50                  | 0               | Station Road                        | ATC            | July | 2015 |      | Wirral - WTM |
| 51                  | 0               | A540 Chester Road                   | ATC            | June | 2015 |      | Wirral - WTM |
| 52                  | 0               | B5137 Brimstage Road                | ATC            | July | 2015 |      | Wirral - WTM |
| 53                  | 0               | Heron Road                          | ATC            | June | 2015 |      | Wirral - WTM |
| 54                  | 0               | Station Road (Hoylake)              | ATC            | June | 2015 |      | Wirral - WTM |
| 55                  | 0               | B5133 Hooton Road                   | ATC            | July | 2015 |      | Wirral - WTM |
| 56                  | 0               | B5151 Birkenhead Road               | ATC            | July | 2015 |      | Wirral - WTM |

### Table A.2: RSI Traffic Survey Commission

| RSI Ref | Road Name            | Description                        |
|---------|----------------------|------------------------------------|
| 1       | A551 Upton Road      | north of Junction 2a               |
| 2       | A5027 Upton By Pass  | west of Junction 2a                |
| 3       | A551 Moreton Road    | south of Junction 2a               |
| 4       | A552 Woodchurch Road | Woodchurch Road / Arrowe Park Road |
| 5       | Station Road         | near M53 Bridge                    |
| 6       | A5137 Brimstage Road | near Junction 4                    |



| Road Name            | Description                                                              |
|----------------------|--------------------------------------------------------------------------|
| B5137 Brimstage Road | near Junction 4                                                          |
| Kingsway Tunnel      | Toll booths                                                              |
| Queensway Tunnel     | Toll booths                                                              |
|                      | Road Name<br>B5137 Brimstage Road<br>Kingsway Tunnel<br>Queensway Tunnel |



## Appendix B. Network Development

### **B.1** Simulation Network Coding

The simulation area has all junctions coded in explicit detail, this includes junction type, number of approach lanes, priority rules etc., so that delay at junctions by individual turning movement can be modelled and there is some junction interaction, e.g. the effect of blocking back of traffic can be modelled. The assumption is that in the simulation area, the effect of junctions is the key determinant on assignment.

### **B.2** Junction Coding

With a large number of junctions in a model it is impractical to calculate a unique saturation flow for each individual movement at each junction. Instead, sensitivity analysis of the different parameters can be conducted, and a set of standard values adopted. However at individual locations this aspect was reviewed, where necessary, during model calibration.

### **B.2.1 Priority Junctions**

Standard saturation flows for movements at priority junctions have been developed, which take into account the approach width, turning radii and visibility on each arm of a junction, with the saturation flow for each individual movement being calculated separately. These have been calculated based on information included in TRRL Report SR 810 and TRRL Report LR 942:

Table B.1 details the saturation flows which were adopted at priority junctions in the simulation network. This table only applies to unopposed major arm traffic movements, minor arm and major arm opposed movement saturation flows are shown in Table B.2.



| side/Offside | oach Width | itry Width | unhill/Uphill | Bradient | ng Proportion | ing Radius | ovement | Left Turn | Straight | Right Tum |
|--------------|------------|------------|---------------|----------|---------------|------------|---------|-----------|----------|-----------|
| Near         | Appr       | En         | Dow           | 0        | Turnir        | Turr       | W       |           | Sat Flow |           |
| N            | 3.5        | 3.5        | 0             | 0        | 1             | 20         | Ţ       | 1828      |          |           |
| N            | 3.5        | 3.5        | 0             | 0        | 1             | 40         |         | 1894      |          |           |
| N            | 3.5        | 3.5        | 0             | 0        | 0.5           | 20         | 1       | 1894      | 1894     |           |
| N            | 3.5        | 3.5        | 0             | 0        | 0.5           | 40         |         | 1929      | 1929     |           |
| N            | 3.5        | 3.5        | 0             | 0        | 0.5           | 20         | +       | 1894      |          | 1894      |
| N            | 3.5        | 3.5        | 0             | 0        | 0.5           | 40         | ļ       | 1929      |          | 1929      |
| N            | 3.5        | 3.5        | 0             | 0        | 0.333         | 20         | .↓      | 1917      | 1917     | 1917      |
| N            | 3.5        | 3.5        | 0             | 0        | 0.333         | 40         |         | 1941      | 1941     | 1941      |
| N            | 3.5        | 3.5        | 0             | 0        | 0             | 0.1        | Ť       |           | 1965     |           |
| 0            | 3.5        | 3.5        | 0             | 0        | 0             | 0.1        |         |           | 2105     |           |
| 0            | 3.5        | 3.5        | 0             | 0        | 0.5           | 20         | Ĺ.      |           | 2029     | 2029      |
| 0            | 3.5        | 3.5        | 0             | 0        | 0.5           | 40         |         |           | 2066     | 2066      |
| 0            | 3.5        | 3.5        | 0             | 0        | 1             | 20         |         |           |          | 1958      |
| 0            | 3.5        | 3.5        | 0             | 0        | 1             | 40         |         |           |          | 2029      |

 Table B.1:
 Priority Junction - Saturation Flows (PCU / hr) for major arm unopposed movements

 Table B.2:
 Priority Junction - Saturation Flows (PCU / hr) for opposed movements

| Minor Arm |       |       | Major Arm Opposed |
|-----------|-------|-------|-------------------|
| Left      | Ahead | Right | Right             |
| 721       | 721   | 574   | 721               |

### **B.2.2 Signalised Junctions**

### B.2.2.1 Saturation Flows

The saturation flows (PCUs) in Table B.3 were adopted at signalised junctions. The values displayed in Table B.3 are per movement per full lane. Saturation flows are based on the relationships included in TRRL Report RR67.



|       | nctions (PCU / hr) | signalised june | uration flows at | Table B.3: Sati |
|-------|--------------------|-----------------|------------------|-----------------|
| Right | Ahead &<br>Right   | Ahead           | Ahead &<br>Left  | Left            |
| 1850  | 1900               | 1950            | 1900             | 1800            |

Note that standard values for lane width, entry width, turning proportion and turning radii have been adopted. No gradient has been assumed.

### B.2.2.2 Signal Staging and Timings

Signal timings and staging were provided by Wirral Council. At each junction signal staging was coded as indicated on the signal staging plans provided. At complex junctions some simplifications were required to represent the junction in SATURN.

The majority of the traffic signal timing information contained only minimum and maximum green times. In the case of VA, MOVA and SCOOT operated signals, stage lengths can differ from cycle to cycle. A standard approach of using the maximum signal timing was adopted, where model assignments indicated that this approach was not providing the observed level of delay (from TrafficMaster) the signal timings were adjusted.

### **B.2.3 Roundabout Coding**

### B.2.3.1 Signalised Roundabouts

These were coded as a series of nodes, interspersed with priority junctions if required and the CLF plans provided in the signal timing information were used.

### B.2.3.2 Non-signalised Roundabouts

Non-signalised roundabouts, if greater than 28m in diameter, were coded as a series of priority junctions. This allows for lane gains/drops on the circulating carriageway, and is preferable when modelling noncircular roundabouts as different link lengths can be modelled on the circulating carriageway between different approaches.

Roundabouts with a diameter of less than 28m were modelled as single nodes (SATURN Junction Type 2).

Table B.4 shows the saturation flows adopted at all non-signalised roundabouts, whether coded as single node roundabouts or 'exploded' priority node roundabouts. These saturation flows are applied to entry links.



| Table B.4: | Roundabout – Saturation Flows (PCO/nr) |         |         |          |          |  |
|------------|----------------------------------------|---------|---------|----------|----------|--|
|            |                                        | E       |         |          |          |  |
| v          |                                        | 3.5 (1) | 7.0 (2) | 10.5 (3) | 14.0 (4) |  |
| 3.5 (1)    | 10                                     | 1060    | 1561    | 1715     | 1790     |  |
|            | 20                                     | 1060    | 1740    | 2061     | 2248     |  |
|            | 30                                     | 1060    | 1833    | 2275     | 2561     |  |
|            | 40                                     | 1060    | 1889    | 2420     | 2790     |  |
| 7.0 (2)    | 10                                     |         | 2121    | 2621     | 2776     |  |
|            | 20                                     |         | 2121    | 2801     | 3121     |  |
|            | 30                                     |         | 2121    | 2893     | 3335     |  |
|            | 40                                     |         | 2121    | 2950     | 3481     |  |
| 10.5 (3)   | 10                                     |         |         | 3182     | 3682     |  |
|            | 20                                     |         |         | 3182     | 3861     |  |
|            | 30                                     |         |         | 3182     | 3954     |  |
|            | 40                                     |         |         | 3182     | 4010     |  |
| 14.0 (4)   | 10                                     |         |         |          | 4242     |  |
|            | 20                                     |         |         |          | 4242     |  |
|            | 30                                     |         |         |          | 4242     |  |
|            | 40                                     |         |         |          | 4242     |  |

### Table B.4: Roundabout – Saturation Flows (PCU/hr)

Where:

E = entry width (meters)\*

 $V = approach width (m)^*$ 

I = average effective flare length (m)

\*The number in brackets represents the typical number of lanes at an entry/approach of the respective width.

Circulating saturation flows on 'exploded' roundabouts are coded as per major arm priority links. Saturation flows were calculated based on formulas included in, TRRL Report SR 810 and TRRL Report LR 942.

### **B.3** Cruise Speeds

The cruise speeds represent the speed at which traffic travels on the link in the absence of any junction delay. A correspondence was developed between the Wirral and TrafficMaster networks and the mid-link TrafficMaster speed for each time period was extracted from the TrafficMaster dataset.

### **B.4 Pedestrian Crossings**

Pedestrian crossings of key significance in relation to traffic flow delay have been accounted for in the development of the highway network.



### B.5 Banned Links / Turns

Banned links and turns have been defined by specific vehicle type (e.g. OGV) in the turn restriction card of the SATURN network coding deck. Restrictions applicable to all movements have been accounted for directly in the simulation junction coding.

### **B.6 Height and Weight Restrictions**

Height and weight restrictions are included in the model using turn or link based restrictions. Height and weight restrictions were taken as applying to OGVs only.

### **B.7 Bus Routes**

Bus route and frequency is required particularly in the simulation area in order that the model will recognise the contribution made by buses to total traffic flows on links and at junctions.

Information on the number of buses travelling along each model link in each model time period was extracted from LCRTM and applied as a preload in the SATURN assignment.

### **B.8 Buffer Network Coding**

In the buffer area the representation of the road network in the traffic model is link based with the network described by it links characteristics. Junctions are not specifically modelled; however the form of flow delay curve includes an allowance for junction delays.

### **B.8.1** Requirements

Each link in the SATURN buffer area requires the following coded characteristics:

- A node
- B node
- Link type or capacity index
- Free flow speed or time
- Link Capacity
- Direction (1 way or 2 way)
- Link Length
- Speed at capacity
- Power (n)

49

All of the above attributes, except the last two, have been coded throughout the model using readily available data sources. The link type has been taken from the LCRTM model.



Link Type or Capacity Index reflects the road characteristics in terms of road type, road standard, level of development and speed limit. The capacity index is used to allocate an appropriate flow delay curve to each link. They reflect the road type, capacity, free flow speed and characteristics.

Free flow speed has been applied; this has been based on the speed limit of the link.

Link length has been obtained from the GIS network; care has been taken to ensure the link length properly represents the alignment of the link.

Link capacity, is based on the number of lanes, road type and standard, and level of development.

Speed at capacity and Power (n) are generated subsequently to reflect appropriate link speed flow relationships for each link, as defined by the capacity index.

### **B.8.2** Flow Delay Curves

Flow delay curves are used to relate the number of vehicles along a particular type of link with average speed. These were used throughout the buffer area of the network. These flow delay relationships are based on COBA. In SATURN the flow delay relationship is defined by the free flow speed, speed at capacity and the shape of the relationship which is determined by the power function.

It is not possible to define separate speed flow curves for OGVs as such in SATURN. However it is possible to specify a different maximum speed limit for OGVs by Capacity Index using the CLICKS parameter. This at least ensures that on a lightly trafficked link OGVs are not travelling at a speed in excess of their permitted maximum.

The speed flow curves used in are shown in Table B.5.

| LinkType | Description                       | S0 (kph) | S Min<br>(kph) | Capacity<br>(PCUs) | N    |
|----------|-----------------------------------|----------|----------------|--------------------|------|
| 1        | 4-lane rural motorway             | 116      | 45             | 9320               | 3.42 |
| 2        | 3-lane rural motorway             | 116      | 45             | 6990               | 3.42 |
| 3        | 2-lane rural motorway             | 112      | 45             | 4660               | 3.2  |
| 4        | 3-lane rural dual carriageway     | 109      | 45             | 6299               | 3.01 |
| 5        | 2-lane rural dual carriageway     | 105      | 45             | 4199               | 2.8  |
| 6        | Wide rural single carriageway     | 91       | 45             | 1687               | 2.17 |
| 7        | Standard rural single carriageway | 87       | 45             | 1328               | 2.04 |
| 8        | Poor rural single carriageway     | 67       | 45             | 1328               | 0.99 |
| 101      | Good Suburban Dual carriageway    | 78       | 35             | 3540               | 2.78 |
| 102      | Typical Suburban Dual Carriageway | 71       | 35             | 3540               | 2.46 |
| 103      | Poor Suburban Dual Carriageway    | 58       | 35             | 3540               | 1.4  |
| 104      | Good Suburban Single carriageway  | 68       | 25             | 1680               | 3.95 |

### Table B.5: Flow Delay Curve Definitions

50

| LinkType | Description                         | S0 (kph) | S Min<br>(kph) | Capacity<br>(PCUs) | N    |
|----------|-------------------------------------|----------|----------------|--------------------|------|
| 105      | Typical Suburban Single Carriageway | 61       | 25             | 1680               | 4.28 |
| 106      | Poor Suburban Single Carriageway    | 48       | 25             | 1680               | 2.25 |
| 201      | Urban Non-Central Good              | 54       | 25             | 896                | 1.67 |
| 202      | Urban Non-Central Typical           | 49       | 25             | 896                | 1.56 |
| 203      | Urban Non-Central Poor              | 45       | 25             | 896                | 1.48 |
| 204      | Urban Central Good                  | 37       | 15             | 896                | 1.83 |
| 205      | Urban Central Typical               | 34       | 15             | 896                | 1.73 |
| 206      | Urban Central Poor                  | 29       | 15             | 896                | 1.55 |
| 301      | Small Town Light                    | 63       | 30             | 1344               | 2.38 |
| 302      | Small Town Medium                   | 57       | 30             | 1344               | 1.94 |
| 303      | Small Town Heavy                    | 46       | 30             | 1344               | 1.06 |
| 401      | Slip Roads - On Slip                | 30       | 30             | 9999               | 1    |
| 402      | Slip Roads - Off Slip               | 30       | 30             | 9999               | 1    |
| 403      | Roundabouts ICD <= 30m              | 30       | 30             | 9999               | 1    |
| 404      | Roundabouts ICD <= 100m             | 30       | 30             | 9999               | 1    |
| 405      | Roundabouts ICD > 100m              | 30       | 30             | 9999               | 1    |
| 406      | External Links                      | 30       | 30             | 9999               | 1    |
| 407      | Zone Connectors                     | 30       | 30             | 9999               | 1    |



## Appendix C. Matrix Build

### C.1 Observed Matrix

The observed matrix has been developed using the 2015 origin-destination surveys plus a set of RSIs undertaken around Birkenhead in 2009. To provide a complete set of movements in the buffer area, RSIs are also included from surveys undertaken in the Liverpool City Region.

### C.1.1 Segmentation

The observed highway matrices are built at time period level by purpose and direction.

|    | Observed highway Mathx Time Fehous |                |
|----|------------------------------------|----------------|
| ID | Description                        | Time period    |
| 1  | AM Peak Period                     | 0700-1000 hrs. |
| 2  | Inter Peak Period                  | 1000-1600 hrs. |
| 3  | PM Peak Period                     | 1600-1900 hrs. |
| 4  | Off Peak Period                    | 1900-0700 hrs. |

 Table C.1:
 Observed Highway Matrix Time Periods

| Table C.2: | Observed Highway Matrix Purposes   |                    |
|------------|------------------------------------|--------------------|
| ID         | Purpose                            | Direction          |
| 1          | Home Based Commute                 | From Home, To Home |
| 2          | Home Based Education               | From Home, To Home |
| 3          | Home Based Shopping                | From Home, To Home |
| 4          | Home Based Other                   | From Home, To Home |
| 5          | Home Based Employer's Business     | From Home, To Home |
| 6          | Non Home Based Employer's Business | Non Home Based     |
| 7          | Non Home Based Other               | Non Home Based     |

### C.1.2 RSI Transposition

RSI records are generally only captured in one direction. In order to create a full matrix these are transposed to create a proxy of travel in the reverse direction. To create the transposed records:

- the origin and destinations have been switched;
- trips from home have been converted to trips to home and vice versa;
- trip purpose remains the same; and

52

trip time has been adjusted based on trip chain information from the Merseyside Countywide Household Travel Survey (CWS).

The trip time calculation examined the trip chaining in the CWS to establish the propensity to make further trips whilst on a particular trip. The analysis stepped through each stage in a person's trip chain, which was defined as a sequence of trips that started with a From Home trip and ended with a To Home trip, with



Non Home Based trips between. The analysis examined the sequence of trips within the chain that followed, split by trip purpose, direction and travel hour.

The transposed records were combined with the RSI records to form the complete set of OD data for matrix building.

### C.1.3 RSI Expansion

The RSI records and transposed records represent only a sample of people travelling through each survey point. Therefore, to produce a matrix containing a full representation of trips, interview records are expanded to match traffic counts i.e. each interview is assumed to be equivalent to a number of trips not just the one trip that has been captured in the surveys.

This is a two stage process, where firstly records are expanded to the control MCC counts and secondly to the ATC count at the survey site.

Finally, a set of adjustment factors are applied to the RSI records to account for gaps in the RSI cordon, postcard bias and non-surveyed RSI data.

### C.1.3.1 Gaps in RSI Cordon

The observed matrix build is carried out on a sector cordon basis. RSIs have not been carried out at every location that crosses the cordon boundaries. To ensure the observed matrix accurately reflects the traffic flow across each cordon an infilling exercise has been carried out. This has been done in two ways:

- Factoring RSI records at a suitable site to the value of the count on any links that cross the cordon where we do not have an RSI site;
- Creating a synthetic RSI for any gaps in the cordon using select link analysis of an assignment of the 2012 LCRTM model factored to 2015 traffic counts.

### C.1.3.2 Postcard Bias Factor

It is widely acknowledged that the return rate of postcard forms varies significantly between different travel purposes, potentially leading to skewing of the RSI data. A postcard bias factor has been produced for each site that adjusts the purpose split of postcard records to reflect that of the interview records by time period. This calculation only uses RSI records where there are interview and postcard records in the same time period.

### C.1.3.3 Infill Factor

RSI data is not always present for every half hour time/vehicle type, particularly for LGV/OGV. To ensure the total flow across cordons is represented it is necessary to produce additional factors. To address this issue factors have been produced at time period level that compare the total ATC count at each site per



time period to the ATC count used in the expansion factor process for the time period. The factor of these two values has then been applied.

### C.1.4 Expansion Factor Analysis

Table C.3 presents the final expansion factors. It is recommended that expansion factors are less than 10, which is the case for 96% of our records indicating that a good sample of records were collected. It is often difficult to obtain a high sample of LGVs and OGVs, but the below table indicates that the RSI data contained a good sample of these vehicles.

| 14010 0.0. | Expandion radio riangoo |     |     |       |
|------------|-------------------------|-----|-----|-------|
| Range      | CAR                     | LGV | OGV | Total |
| <1         | 75%                     | 75% | 70% | 74%   |
| <2         | 11%                     | 9%  | 8%  | 10%   |
| <5         | 8%                      | 8%  | 9%  | 8%    |
| <10        | 3%                      | 4%  | 6%  | 4%    |
| <15        | 1%                      | 2%  | 2%  | 1%    |
| <20        | 1%                      | 1%  | 1%  | 1%    |
| <30        | 1%                      | 1%  | 1%  | 1%    |
| <40        | 0%                      | 0%  | 1%  | 0%    |
| <50        | 0%                      | 0%  | 0%  | 0%    |
| >=50       | 0%                      | 1%  | 1%  | 0%    |
|            |                         |     |     |       |

### Table C.3: Expansion Factor Ranges

### C.1.5 Observed Matrix Build Set-Up

The RSI data provides a wealth of information on travel patterns, but there is the potential for trips to be observed at more than one survey location. The Visual -TM ERICA program has been used to remove these instances of double-counting.

In order to carry out the RSI data expansion to counts and the full build of the observed trip matrix, it is necessary to prepare a set of parameter files for use in ERICA.

Firstly the zone-cordon system needs to be defined in ERICA in terms of 'screenline segments'. These segments are the boundaries between individual cordons. Each RSI site is therefore defined as sitting on a specific screenline segment. When ERICA seeks to capture movements between cordons, it groups sites by their screenline segment.

There are five main parameter files required by ERICA of:

- SECPAT;
- STASEG;
- ERCODM;
- Column Position; and



Label.

Each of these files is described below.

### C.1.5.1 SECPAT

The SECPAT file is used to define the relationship of zones to sectors. This is a list of the model sectors with their respective zones alongside them.

### C.1.5.2 STASEG

The STASEG file is essentially a list of every individual RSI site that is input to ERICA, the screenline segment it sits on, and the file location of the RSI data for each site.

Each site also has a station variance factor that is used as a weighting to signify the significance of the records contained in the RSI input file. The greater the variance applied, the less weight the records in the file will carry in the ERICA process. For example a synthesised site will have a greater site variance than a fully observed site.

### C.1.5.3 ERCODM

55

The ERCODM file is key to the matrix building process in ERICA as it is used to identify which screenline segments should be used to select the trips making up cordon crossing movements. Each sector-to-sector movement is listed individually, and alongside it the screenline segments that ERICA should extract trips from. ERICA uses the screenline segments in the ERCODM file to match sector-to-sector movements to the RSI input files listed in the STASEG file.

Each sector should be completely bounded by screenline segments, and each RSI site should have one of these segments associated with it. Each sector-to-sector movement has a positive and a negative set of segments associated with it. The purpose of this is to eliminate 'wiggly' trips, those trips which cross the cordon more than once at different sites and are therefore picked up as multiple trips. For instance if a trip from sector 1 to sector 2 is identified in the matrix build as crossing in the opposite direction, it is assumed that this trip must have to cross the screenline segment in the 'correct' direction twice in order to get to its destination. The total 'negative' trips for an i, j pair are therefore subtracted from the 'positive' trips for that i, j pair.

An example of how the ERCODM file should look is given below:



| O sector | D sector | Pos/Neg | Cordon no | Factor |    |    |   |
|----------|----------|---------|-----------|--------|----|----|---|
| 1        | 2        | Р       | 1         | 1      | 12 | 16 | 2 |
| 1        | 2        | N       | 1         | 1      | 11 | 15 | 1 |
| 1        | 3        | Р       | 1         | 1      | 12 | 16 | 2 |
| 1        | 3        | N       | 1         | 1      | 11 | 15 | 1 |
| 1        | 4        | Р       | 1         | 1      | 12 | 16 | 2 |
| 1        | 4        | N       | 1         | 1      | 11 | 15 | 1 |
| 1        | 5        | Р       | 1         | 1      | 12 | 16 | 2 |
| 1        | 5        | N       | 1         | 1      | 11 | 15 | 1 |
| 1        | 6        | Р       | 1         | 1      | 12 | 16 | 2 |
| 1        | 6        | N       | 1         | 1      | 11 | 15 | 1 |
| 1        | 7        | Р       | 1         | 1      | 12 | 16 | 2 |
| 1        | 7        | N       | 1         | 1      | 11 | 15 | 1 |
| 1        | 8        | P       | 1         | 1      | 12 | 16 | 2 |
| 1        | 8        | N       | 1         | 1      | 11 | 15 | 1 |
| 1        | 9        | Р       | 1         | 1      | 12 | 16 | 2 |

In this case all the trips passing from sector 1 to sector 2 are being drawn from sites on screenline segments 12, 16 and 2. Trips passing from sector 1 to sector 2 passing through other segments are not included. This acts to prevent double counting, as in many cases trips from sector X to sector Y will pass through numerous segments. Any trips with an origin in sector 1 and a destination in sector 2 that pass through screenline segments 11, 15 or 1 will be counted as negative (or 'wiggly') trips and subtracted from the total.

In most instances there are two ways to specify the screenline segments used to travel between two sectors:

- leaving the Origin sector
- entering the Destination sector

In order to include as much RSI data as possible two Ercodm files are defined ('A' and 'B'), relating to each of the above options.

### C.1.5.4 Column Position

The Column Position file specifies which columns in the RSI input spreadsheets represent required values for use in the ERICA expansion process. Different DEF files can be used if RSI inputs are formatted differently; the WTM input RSI spreadsheets are in uniform formats. The above DEF file is therefore named alongside each individual RSI spreadsheet input in the STASEG file.

### C.1.5.5 Label

56

Like the Column Position file, the Label file is only used for the expansion process in ERICA. It defines the vehicle types and time periods that are used in the RSI and MCC data.



### C.1.6 Observed Trip Matrix Build

The matrix build function in ERICA takes all the input RSI records, synthesised records and parameter files, and builds matrices in binary format to a specification entered by the user. This specification for WTM is that vehicle (rather than occupants) matrices are built by:

- time period;
- vehicle type (Car/LGV/OGV); and
- purpose.

When the initial matrix was built a positive and a negative trip matrix was produced. The purpose of this is to eliminate the 'wiggly' trips that cross cordons more than once. The negative trips are subtracted from the positive trips; any cells that become negative due to this process are set to zero and the negative trips are subtracted from the remaining matrix cells within that sector.

As discussed above two ERCODM files are used in the WTM matrix build to reflect the fact that sector-tosector movements often have more than one set of observations to draw trips from. The two resulting matrices are built and saved separately, then merged together.

### C.1.7 Observed Matrix Merge

The final step in producing the observed trip matrices is the merging of the two separate ERCODM matrices, files 'A' and 'B'.

This takes the form of a variance weighted merge. Each cell in an ERICA matrix contains a variance dependent on the size of the expansion factor for each record and the station variance factor in the Staseg file. The larger the variance the less reliable a trip is deemed. The merge uses the variance as a weight to calculate the average number of trips. Where an observed zero flow estimate exists an average variance is calculated:

- Matrix A an average of all variances for each origin zone
- Matrix B an average of all variances for each destination zone

The variance weighted merge process is expressed as:

$$f_m = \frac{f_1 I_2 + f_2 I_1}{I_1 + I_2}$$

Where:

57

 $f_m$  = merged flow estimate



 $f_i$  = flow estimate from source i

 $I_i$  = index of dispersion for source *i* trip estimate; defined as variance divided by trip estimate

The Index of dispersion is defined as:

$$I = \frac{v}{f}$$

where:

*I* = Index of Dispersion

v = variance for *ij* flow estimate

f = flow estimate for origin *i* to destination *j* 

### C.2 Synthetic Matrix

The LCRTM synthetic matrix has been converted to the WTM zoning system for use in the WTM model.

The correspondences between LCRTM and WTM zones have been developed using Address Base. All WTM zones have been created by splitting LCRTM zones. The following classifications are used:

- Production trips: Residential Units
- Attraction trips:

58

- Commute + EB Employment Units
- Shopping Retail Units
- Education School Locations
- Other Leisure Units
- Non Home Based (NHB) trips:
  - NHB EB commercial units (these will be used for both origins and destinations)
  - NHB Other an average of all attraction proportions (as these trips can be to/from anywhere these will be used for Origins, leisure units will be used for destinations)
- LGV/OGV: commercial units (these will be used for both origins and destinations)

A set of factors are then created based on the number of units in each WTM zone and the corresponding LCRTM zone. These are applied to the each zone LCRTM matrix to convert to the WTM zone system.

The purpose of the synthetic matrix is to provide a complete representation of demand to, from and within the LCRTM Study Area. This is used in two ways, firstly to strengthen the observed matrices and secondly to infill any areas where observed data is not available. Land use information e.g. numbers of housing and jobs are used in conjunction with observed trip rates to synthesise travel demand.



The development of the LCRTM synthetic matrix is described below.

### C.2.1 Calculation of Productions and Attractions

Productions (where trips are generated) and attractions (where trips are attracted to) are calculated through the following steps:

- Home Based Productions calculated from Households \* Trip Rate
- Attractions calculated from ABI/pupil numbers (study area) and TEMPRO (buffer and external area)
- Attractions constrained to production totals
- NHB Productions calculated based on constrained Home Based Attractions \* propensity for NHB trips
- NHB Attractions calculated based on constraining the Attractions to NHB production totals

Trip rates and the propensity to make NHB trips are derived from the CWS. Data from the 2008, 2010 and 2013 CWS has been combined to increase the number of records available for these calculations.

Trip productions are calculated for the study and buffer area; trip attractions are calculated for the entire model area.

### C.2.2 Distribution

Productions and attractions provide details of the total number of trips to and from each zone. The distribution process links the two to determine how many trips travel between each zone. The distribution has been undertaken in two ways:

- i) Using the proportions from the Census 2011 Travel to Work data-set for commute trips.
- Using a standard gravity model which uses the travel cost between each zone combined with the productions and attractions to determine the number of trips between each zone for Other and Business purposes. This process is calibrated to an observed mean trip cost to ensure the distribution is realistic.

### C.2.2.1 Census Travel to Work Distribution

The Census Travel to Work data is aggregated to LCRTM zone level. The proportion of trips travelling between each LCRTM zone has been calculated and used to distribute the LCRTM productions and attractions.

### C.2.2.2 Gravity Model

59

The trip cost between each zone has been calculated using an assignment of the 2012 LCRTM model and the model has been calibrated to an average trip time from the National Travel Survey (NTS).



### C.2.3 Conversion to Origin-Destination Format

The LCRTM observed matrices have been produced in Origin-Destination format and this is the format to be used in assignment, therefore the synthetic matrices have been converted from 24 hour Production-Attraction (PA) format to time period based Origin-Destination (OD) matrices using locally adjusted NTS tour proportions (retaining information on the trip direction).

### C.3 TrafficMaster Matrix

The LCRTM TrafficMaster matrix has been converted to the WTM zoning system for use in the WTM model.

TrafficMaster (TM) data is provided by the DfT as individual trip records in the Trafficmaster zoning system for a 12 month period. Each record represents a journey between ignition-on and ignition-off of a tracked vehicle. TM GPS data is available from mainly vehicles belonging to TM customers who are primarily high mileage private drivers and company car drivers. There are now more than 60,000 of these drivers across the country, and taken over a full year, these tracked vehicles provide a large volume of trip making.

Although it is known that TM customers are primarily company car drivers and a small proportion of private customers, the methodology describes here assumes that TM data provides a random sample of journey making for all car trip purposes. This is the key assumption and simplification in this methodology.

The development of the LCRTM TM matrix is detailed below.

### C.3.1 Conversion to LCRTM zoning system

The TM zoning system is provided with MapInfo files that allow mapping to be made to LCRTM zoning system. This is done by overlapping the two zoning systems and applying the following simple rules:

- If TM zone is more than 90% inside LCRTM zone, then assign all of zone trips to that LCRTM zone. Otherwise split TM zone between corresponding LCRTM zones according to area of overlap.
- If TM zone is larger than LCRTM zone, split the TM zone to LCRTM zones according to area proportions in the overlaps.

### C.3.2 Annual weekday trip totals

The next step involves aggregation of TM records into total annual weekday trips by TM vehicle types and by TM time periods. This step yields matrices for each time period for the following vehicle types:

- Car (all purposes)
- LGV
- OGV



In order to convert these annual TM matrices to average weekday, these matrices are divided by 260. These values then represent average trips recorded for each weekday for each time period and for each vehicle type. As they do not represent actual total trips made for each day, expansion to total observed or estimated daily trips is required. This is described further below.

The average weekday (all purpose) car matrices form the basis for expansion to (and creation of) purposespecific car travel matrices.

### C.3.3 Creation of (all purpose) weekday trip matrices

The next stage in this process is to factor up recorded TM daily matrix values to observed trip counts within the LCRTM Study Area. This is based on the following sources of information:

- sector-sector RSI observation by vehicle type
- synthetic matrix

61

More specifically the scaling follows the following rules:

- Inter-sector: All within the Study Area. Factor TM movements to RSI observed totals
- Inter-sector: All Study Area-External. Factor TM movements to RSI observed totals
- Inter-sector: All External-External. Factor to synthetic matrix totals
- Intra-sector: Factor to synthetic totals

This stage yields TM matrices with levels of traffic broadly in line with Study Area traffic levels.

### C.3.4 Creation of purpose-specific matrices

In order to create purpose-specific car matrices, use is made of journey purpose splits and trip length distributions from the synthetic matrix.

Trips purpose matrices are obtained by factoring all-purpose matrices with trip purpose proportions from the synthetic matrix. This preserves the matrix totals.

These purpose-specific matrices are then forced to adopt the synthetic matrix trip length distribution for each car purpose (using TLD ratios between TM matrices and synthetic matrices). This process is, of course constrained to the existing total number of trips.

The outcome from this stage is a set of purpose-specific TM matrices that have the same TLDs as the synthetic matrix.



### C.4 Matrix Merge

The three matrices are merged based on their relative strengths and weaknesses. There are well established processes for merging synthetic and observed matrices using 90% of the observed matrix and 10% of the synthetic matrix as set out in DMRB 12.1.1.8. There is no guidance on how to include TM matrices, therefore 15% of the TM matrices have been used based on the cell coverage of this matrix.

Figure C.1 provides details of the HY merge process.



62



## Appendix D. Model Assignment Statistics

#### Table D.1: AM Peak Hour - Model Convergence Statistics (Table 1)

| LOOP | Ass.      | Sim.    | A/S Step | %FLOWS | %DELAYS | %V.I. | %GAP    |
|------|-----------|---------|----------|--------|---------|-------|---------|
| 26   | 0.0195/50 | 0.002/7 | 1.000/   | 1      | 99.5    | 99.8  | 0.00055 |
| 27   | 0.0177/50 | 0.002/7 | 1.000/   | 1      | 99.7    | 99.7  | 0.0005  |
| 28   | 0.0130/50 | 0.001/7 | 1.000/   | 1      | 99.6    | 99.7  | 0.00045 |
| 29   | 0.0121/50 | 0.002/7 | 1.000/   | 1      | 99.7    | 99.8  | 0.00041 |

#### Table D.2: AM Peak Hour - Model Convergence Statistics (Table 2)

| LOOP | ASS-HRS  | CHANGE | SIM-HRS | SIM-KMS  | GEHBAR | AAD   | RAAD  | XMSD  | SAD   | RSAD  |
|------|----------|--------|---------|----------|--------|-------|-------|-------|-------|-------|
| 26   | 418198.5 | -0.001 | 11880.3 | 472133.7 | 0.006  | 0.113 | 0.018 | 0.053 | 0.012 | 0.19  |
| 27   | 418209.3 | 0.003  | 11881.2 | 472125.8 | 0.005  | 0.101 | 0.016 | 0.059 | 0.013 | 0.201 |
| 28   | 418210.8 | 0      | 11879.3 | 472120.9 | 0.005  | 0.105 | 0.017 | 0.052 | 0.014 | 0.219 |
| 29   | 418192.2 | -0.004 | 11880.9 | 472113.2 | 0.005  | 0.104 | 0.016 | 0.059 | 0.013 | 0.195 |

#### Table D3: Average IP Hour - Model Convergence Statistics (Table 1)

| LOOP | Ass.      | Sim.     | A/S Step | %FLOWS | %DELAYS | %V.I. | %GAP    |
|------|-----------|----------|----------|--------|---------|-------|---------|
| 22   | 0.0044/50 | 0.000/ 7 | 1.000/   | 1      | 99.6    | 99.9  | 0.00036 |
| 23   | 0.0034/50 | 0.000/7  | 1.000/   | 1      | 99.7    | 99.9  | 0.00031 |
| 24   | 0.0033/50 | 0.000/7  | 1.000/   | 1      | 99.7    | 99.9  | 0.00023 |
| 25   | 0.0025/50 | 0.000/ 7 | 1.000/   | 1      | 99.7    | 99.9  | 0.00019 |

### Table D.4: Average IP Hour - Model Convergence Statistics (Table 2)

| LOOP | ASS-HRS  | CHANGE | SIM-HRS | SIM-KMS  | GEHBAR | AAD   | RAAD  | XMSD  | SAD   | RSAD  |
|------|----------|--------|---------|----------|--------|-------|-------|-------|-------|-------|
| 22   | 252204.1 | -0.005 | 7849.1  | 326888.8 | 0.006  | 0.119 | 0.025 | 0.075 | 0.009 | 0.176 |
| 23   | 252206.8 | 0.001  | 7849    | 326885.8 | 0.005  | 0.098 | 0.021 | 0.054 | 0.008 | 0.153 |
| 24   | 252223.6 | 0.007  | 7849.7  | 326875.5 | 0.006  | 0.104 | 0.022 | 0.06  | 0.008 | 0.163 |
| 25   | 252215.5 | -0.003 | 7848.7  | 326882   | 0.005  | 0.096 | 0.02  | 0.053 | 0.009 | 0.18  |

#### Table D.5: PM Peak Hour - Model Convergence Statistics (Table 1)

| LOOP | Ass.      | Sim.    | A/S Step | %FLOWS | %DELAYS | %V.I. | %GAP    |
|------|-----------|---------|----------|--------|---------|-------|---------|
| 22   | 0.0161/50 | 0.005/7 | 1.000/   | 1      | 99.5    | 99.7  | 0.00065 |
| 23   | 0.0177/50 | 0.005/7 | 1.000/   | 1      | 99.5    | 99.7  | 0.00059 |
| 24   | 0.0164/50 | 0.005/7 | 1.000/   | 1      | 99.5    | 99.7  | 0.00052 |
| 25   | 0.0151/50 | 0.005/7 | 1.000/   | 1      | 99.6    | 99.7  | 0.0005  |

### Table D.6: PM Peak Hour - Model Convergence Statistics (Table 2)

63

| LOOP | ASS-HRS  | CHANGE | SIM-HRS | SIM-KMS  | GEHBAR | AAD  | RAAD | XMSD | SAD  | RSAD |
|------|----------|--------|---------|----------|--------|------|------|------|------|------|
| 22   | 440587.8 | -0.004 | 11864.3 | 452252.2 | 0.007  | 0.13 | 0.02 | 0.07 | 0.11 | 1.68 |
| 23   | 440588.3 | 0      | 11863.6 | 452253.1 | 0.006  | 0.11 | 0.02 | 0.07 | 0.11 | 1.71 |
| 24   | 440586   | -0.001 | 11863.6 | 452252.7 | 0.005  | 0.1  | 0.02 | 0.07 | 0.11 | 1.65 |
| 25   | 440576.1 | -0.002 | 11863.5 | 452252.2 | 0.005  | 0.1  | 0.02 | 0.09 | 0.11 | 1.69 |



# Appendix E. Flow Calibration AM



#### Table E.1: Cordon 1 Birkenhead Inner Results – AM

|               |               |                         |        |            |           |        |        |            |           |        | DMRB | (1) GEH Va | alidation |
|---------------|---------------|-------------------------|--------|------------|-----------|--------|--------|------------|-----------|--------|------|------------|-----------|
|               |               |                         | (      | Observed F | low (PCUs | 3)     |        | Modelled F | low (PCUs | ;)     | (    | Total PCUs | ;)        |
| Direction     | Cordon Pt     | Road Name               | Car    | LGV        | OGV       | Total  | Car    | LGV        | OGV       | Total  | Diff | % Diff     | GEH       |
|               | 1             | Queensway Mersey Tunnel | 1,042  | 156        | 0         | 1,198  | 1,113  | 169        | 0         | 1,282  | 84   | 7%         | 2.40      |
|               | 2             | A554 Tower Road         | 878    | 131        | 43        | 1,052  | 881    | 133        | 41        | 1,055  | 3    | 0%         | 0.10      |
|               | 3             | A5027 Duke Street       | 526    | 127        | 66        | 719    | 532    | 119        | 67        | 718    | -1   | 0%         | 0.03      |
|               | 4             | A5030 Beaufort Road     | 478    | 56         | 18        | 551    | 476    | 29         | 6         | 511    | -40  | -7%        | 1.74      |
|               | 5             | A553 Laird Street       | 356    | 54         | 4         | 414    | 354    | 54         | 3         | 411    | -2   | -1%        | 0.12      |
|               | 6             | A5027 Park Road North   | 525    | 47         | 13        | 585    | 520    | 48         | 24        | 592    | 7    | 1%         | 0.28      |
| link a cur al | 7             | Ashville Road           | 422    | 52         | 38        | 512    | 424    | 51         | 38        | 513    | 1    | 0%         | 0.03      |
| Inbound       | 8             | Park Road South         | 493    | 39         | 13        | 546    | 508    | 45         | 13        | 566    | 20   | 4%         | 0.86      |
|               | 9             | Oxton Road              | 467    | 35         | 6         | 507    | 477    | 22         | 3         | 503    | -4   | -1%        | 0.19      |
|               | 10            | A552 Borough Road       | 688    | 73         | 48        | 809    | 672    | 77         | 7         | 755    | -53  | -7%        | 1.91      |
|               | 11            | Derby Road              | 481    | 59         | 41        | 581    | 480    | 58         | 9         | 548    | -33  | -6%        | 1.40      |
|               | 12            | B5148 Church Road       | 542    | 55         | 14        | 610    | 680    | 81         | 21        | 782    | 172  | 28%        | 6.51      |
|               | 13            | B5149 Old Chester Road  | 627    | 57         | 3         | 688    | 691    | 55         | 3         | 750    | 62   | 9%         | 2.30      |
|               | 14            | A41 New Chester Road    | 1,304  | 148        | 97        | 1,549  | 1,218  | 133        | 97        | 1,449  | -100 | -6%        | 2.58      |
|               | INBOUND TOTAL |                         | 8,828  | 1,088      | 404       | 10,320 | 9,027  | 1,076      | 332       | 10,435 | 114  | 1%         | 1.12      |
| Direction     | Cordon Pt     | Road Name               | Car    | LGV        | OGV       | Total  | Car    | LGV        | OGV       | Total  | Diff | % Diff     | GEH       |
|               | 1             | Queensway Mersey Tunnel | 1,984  | 155        | 0         | 2,139  | 2,030  | 197        | 0         | 2,228  | 88   | 4%         | 1.89      |
|               | 2             | A554 Tower Road         | 495    | 79         | 73        | 647    | 496    | 76         | 70        | 643    | -4   | -1%        | 0.17      |
|               | 3             | A5027 Duke Street       | 333    | 88         | 81        | 502    | 324    | 87         | 80        | 490    | -11  | -2%        | 0.51      |
|               | 4             | A5030 Beaufort Road     | 161    | 60         | 10        | 231    | 160    | 60         | 10        | 230    | -1   | 0%         | 0.05      |
|               | 5             | A553 Laird Street       | 224    | 46         | 19        | 289    | 222    | 42         | 23        | 286    | -3   | -1%        | 0.17      |
|               | 6             | A5027 Park Road North   | 231    | 41         | 6         | 279    | 231    | 31         | 6         | 268    | -10  | -4%        | 0.62      |
| Outbound      | 7             | Ashville Road           | 203    | 25         | 38        | 266    | 200    | 25         | 7         | 232    | -34  | -13%       | 2.15      |
| Culbound      | 8             | Park Road South         | 194    | 31         | 10        | 235    | 194    | 20         | 6         | 219    | -16  | -7%        | 1.05      |
|               | 9             | Oxton Road              | 117    | 40         | 8         | 164    | 118    | 40         | 7         | 165    | 1    | 1%         | 0.07      |
|               | 10            | A552 Borough Road       | 368    | 49         | 4         | 421    | 392    | 49         | 4         | 445    | 24   | 6%         | 1.17      |
|               | 11            | Derby Road              | 201    | 25         | 25        | 251    | 203    | 20         | 5         | 228    | -23  | -9%        | 1.47      |
|               | 12            | B5148 Church Road       | 194    | 20         | 5         | 218    | 282    | 30         | 7         | 319    | 101  | 46%        | 6.17      |
|               | 13            | B5149 Old Chester Road  | 264    | 35         | 17        | 317    | 266    | 35         | 5         | 307    | -10  | -3%        | 0.57      |
|               | 14            | A41 New Chester Road    | 825    | 152        | 68        | 1,045  | 846    | 146        | 66        | 1,058  | 13   | 1%         | 0.40      |
|               |               |                         | Car    | LGV        | OGV       | Total  | Car    | LGV        | OGV       | Total  | Diff | % Diff     | GEH       |
|               |               | OUTBOUND TOTAL          | 5,794  | 844        | 367       | 7,005  | 5,964  | 859        | 298       | 7,120  | 115  | 2%         | 1.37      |
|               |               | 2-WAY TOTAL             | 14,622 | 1,932      | 771       | 17,325 | 14,991 | 1,935      | 630       | 17,555 | 230  | 1%         | 1.74      |

350170/ITD/ITN/1/A 07 April 2016 \\mottmac\project\Liverpool\ITD\MISData\Modelling\WirralModel\WP5-BaseYearAssignments\WP5a-Documents\Wirral\_2015\_Model\_Rebase\_LMVR\_RevA\_Draft\_v2.docx 65

Local Model Validation Report

## Mott MacDonald

### Table E.2: Cordon 2 Birkenhead Outer Results - AM

|           |           |                        |        |            |           |        |        |            |           |        | DMRB | (1) GEH Va | alidation |
|-----------|-----------|------------------------|--------|------------|-----------|--------|--------|------------|-----------|--------|------|------------|-----------|
|           |           |                        | (      | Observed F | low (PCUs | ;)     | ſ      | Modelled F | low (PCUs | )      | (    | Total PCUs | 5)        |
| Direction | Cordon Pt | Road Name              | Car    | LGV        | OGV       | Total  | Car    | LGV        | OGV       | Total  | Diff | % Diff     | GEH       |
|           | 1         | Kingsway Mersey Tunnel | 1,205  | 245        | 458       | 1,908  | 1,204  | 251        | 358       | 1,813  | -95  | -5%        | 2.20      |
|           | 2         | A554 Seabank Road      | 439    | 42         | 12        | 494    | 466    | 42         | 12        | 520    | 26   | 5%         | 1.16      |
|           | 3         | B5143 Rake Lane        | 232    | 27         | 18        | 277    | 194    | 24         | 19        | 236    | -41  | -15%       | 2.53      |
|           | 4         | Seaview Road           | 305    | 37         | 41        | 383    | 306    | 29         | 7         | 342    | -41  | -11%       | 2.15      |
|           | 5         | Belvidere Road         | 329    | 40         | 40        | 410    | 335    | 37         | 0         | 372    | -38  | -9%        | 1.94      |
|           | 6         | A551 Wallasey Road     | 593    | 84         | 17        | 693    | 598    | 83         | 17        | 697    | 4    | 1%         | 0.16      |
|           | 7         | A59 (East of M53 J1)   | 1,970  | 230        | 154       | 2,355  | 1,729  | 224        | 280       | 2,233  | -122 | -5%        | 2.54      |
| Inhound   | 8         | A5139 Dock Road        | 1,043  | 112        | 105       | 1,260  | 1,015  | 129        | 104       | 1,248  | -13  | -1%        | 0.36      |
| inbound   | 9         | A553 Hoylake Road      | 740    | 86         | 58        | 884    | 769    | 86         | 28        | 883    | -1   | 0%         | 0.03      |
|           | 10        | A5027 Upton Road       | 535    | 13         | 3         | 550    | 529    | 23         | 28        | 581    | 31   | 6%         | 1.30      |
|           | 11        | A552 Woodchurch Road   | 1,261  | 147        | 79        | 1,487  | 1,278  | 137        | 78        | 1,493  | 6    | 0%         | 0.17      |
|           | 12        | B5151 Storeton Road    | 537    | 45         | 14        | 596    | 540    | 45         | 13        | 598    | 2    | 0%         | 0.09      |
|           | 13        | Borough Road           | 443    | 36         | 2         | 481    | 447    | 31         | 2         | 480    | -1   | 0%         | 0.05      |
|           | 14        | B5148 Church Road      | 642    | 41         | 11        | 693    | 652    | 59         | 14        | 725    | 32   | 5%         | 1.20      |
|           | 15        | B5149 Old Chester Road | 627    | 57         | 3         | 688    | 691    | 55         | 3         | 750    | 62   | 9%         | 2.30      |
|           | 16        | A41 New Chester Road   | 1,304  | 148        | 97        | 1,549  | 1,218  | 133        | 97        | 1,449  | -100 | -6%        | 2.58      |
|           | IN        | BOUND TOTAL            | 12,204 | 1,391      | 1,113     | 14,708 | 11,972 | 1,389      | 1,059     | 14,420 | -288 | -2%        | 2.39      |



|           |           |                        |        |            |           |        |        |            |           |        | DMRB | (1) GEH Va | alidation |
|-----------|-----------|------------------------|--------|------------|-----------|--------|--------|------------|-----------|--------|------|------------|-----------|
|           |           |                        | (      | Observed F | low (PCUs | )      | 1      | Modelled F | low (PCUs | )      | (    | Total PCUs | 3)        |
| Direction | Cordon Pt | Road Name              | Car    | LGV        | OGV       | Total  | Car    | LGV        | OGV       | Total  | Diff | % Diff     | GEH       |
|           | 1         | Kingsway Mersey Tunnel | 2,397  | 149        | 254       | 2,800  | 2,309  | 271        | 314       | 2,893  | 93   | 3%         | 1.75      |
|           | 2         | A554 Seabank Road      | 270    | 60         | 6         | 336    | 270    | 58         | 33        | 360    | 25   | 7%         | 1.31      |
|           | 3         | B5143 Rake Lane        | 178    | 21         | 14        | 213    | 178    | 24         | 14        | 216    | 3    | 1%         | 0.18      |
|           | 4         | Seaview Road           | 285    | 35         | 52        | 372    | 284    | 7          | 3         | 294    | -77  | -21%       | 4.23      |
|           | 5         | Belvidere Road         | 159    | 19         | 38        | 217    | 159    | 19         | 5         | 183    | -34  | -16%       | 2.41      |
|           | 6         | A551 Wallasey Road     | 446    | 64         | 9         | 519    | 444    | 64         | 9         | 516    | -3   | -1%        | 0.13      |
|           | 7         | A59 (East of M53 J1)   | 887    | 104        | 70        | 1,060  | 874    | 110        | 232       | 1,215  | 156  | 15%        | 4.61      |
| Outhound  | 8         | A5139 Dock Road        | 607    | 155        | 202       | 963    | 593    | 150        | 203       | 946    | -17  | -2%        | 0.54      |
| Outbound  | 9         | A553 Hoylake Road      | 486    | 57         | 38        | 581    | 483    | 57         | 34        | 573    | -8   | -1%        | 0.34      |
|           | 10        | A5027 Upton Road       | 708    | 65         | 9         | 783    | 695    | 65         | 11        | 771    | -12  | -1%        | 0.42      |
|           | 11        | A552 Woodchurch Road   | 1,192  | 115        | 60        | 1,367  | 1,233  | 118        | 59        | 1,411  | 44   | 3%         | 1.18      |
|           | 12        | B5151 Storeton Road    | 610    | 51         | 5         | 666    | 585    | 53         | 4         | 641    | -25  | -4%        | 0.97      |
|           | 13        | Borough Road           | 368    | 28         | 8         | 404    | 372    | 35         | 8         | 415    | 11   | 3%         | 0.56      |
|           | 14        | B5148 Church Road      | 267    | 44         | 14        | 325    | 271    | 44         | 8         | 323    | -2   | -1%        | 0.12      |
|           | 15        | B5149 Old Chester Road | 264    | 35         | 17        | 317    | 266    | 35         | 5         | 307    | -10  | -3%        | 0.57      |
|           | 16        | A41 New Chester Road   | 825    | 152        | 68        | 1,045  | 846    | 146        | 66        | 1,058  | 13   | 1%         | 0.40      |
|           |           |                        | Car    | LGV        | OGV       | Total  | Car    | LGV        | OGV       | Total  | Diff | % Diff     | GEH       |
|           | OU        | ITBOUND TOTAL          | 9,949  | 1,152      | 865       | 11,966 | 9,860  | 1,255      | 1,008     | 12,123 | 157  | 1%         | 1.43      |
|           |           | 2-WAY TOTAL            | 22,154 | 2,543      | 1,978     | 26,675 | 21,832 | 2,644      | 2,067     | 26,543 | -131 | 0%         | 0.81      |

Local Model Validation Report

### Table E.3: Cordon 3 Wirral West of M53 Results – AM

|           |           |                            |       |            |           |        |       |              |           |        | DMRB | (1) GEH Va | alidation |
|-----------|-----------|----------------------------|-------|------------|-----------|--------|-------|--------------|-----------|--------|------|------------|-----------|
|           |           |                            | (     | Observed F | low (PCUs | )      |       | Modelled Flo | ow (PCUs) |        | (    | Total PCUs | S)        |
| Direction | Cordon Pt | Road Name                  | Car   | LGV        | OGV       | Total  | Car   | LGV          | OGV       | Total  | Diff | % Diff     | GEH       |
|           | 1         | A554 Bayswater Road        | 656   | 77         | 51        | 784    | 644   | 80           | 50        | 774    | -11  | -1%        | 0.39      |
|           | 2         | A551 Leasowe Road          | 774   | 90         | 61        | 925    | 687   | 76           | 42        | 805    | -119 | -13%       | 4.06      |
|           | 3         | A554                       | 832   | 97         | 65        | 994    | 822   | 100          | 81        | 1,003  | 9    | 1%         | 0.29      |
|           | 4         | A553 Hoylake Road          | 388   | 63         | 13        | 465    | 387   | 63           | 24        | 474    | 9    | 2%         | 0.42      |
|           | 5         | A551 Upton Road            | 687   | 73         | 63        | 823    | 682   | 69           | 60        | 811    | -12  | -2%        | 0.43      |
|           | 6         | A5027 Upton By-Pass        | 598   | 73         | 42        | 713    | 620   | 72           | 41        | 733    | 20   | 3%         | 0.73      |
|           | 7         | A551 Upton Road            | 333   | 51         | 21        | 405    | 329   | 51           | 21        | 401    | -4   | -1%        | 0.19      |
|           | 8         | A5027 Upton Road           | 788   | 92         | 62        | 942    | 793   | 81           | 42        | 915    | -26  | -3%        | 0.87      |
| Inbound   | 9         | A552 Woodchurch Road       | 951   | 119        | 84        | 1,153  | 954   | 118          | 57        | 1,129  | -24  | -2%        | 0.71      |
|           | 10        | Station Road               | 180   | 23         | 14        | 218    | 214   | 22           | 0         | 236    | 18   | 8%         | 1.19      |
|           | 11        | A5137 Brimstage Road       | 181   | 32         | 25        | 238    | 181   | 32           | 25        | 238    | -1   | 0%         | 0.04      |
|           | 12        | B5151 Clatterbridge Road   | 497   | 50         | 13        | 560    | 499   | 72           | 83        | 654    | 94   | 17%        | 3.82      |
|           | 13        | B5136 Thornton Commom Road | 528   | 79         | 14        | 620    | 543   | 82           | 14        | 639    | 19   | 3%         | 0.75      |
|           | 14        | Raby Mere Road             | 71    | 7          | 2         | 79     | 72    | 7            | 1         | 80     | 1    | 1%         | 0.06      |
|           | 15        | Hooton Road                | 296   | 35         | 23        | 353    | 297   | 25           | 20        | 342    | -12  | -3%        | 0.62      |
|           | 16        | Birkenhead Road            | 218   | 25         | 17        | 261    | 219   | 34           | 16        | 269    | 9    | 3%         | 0.54      |
|           | 17        | Chester High Road          | 470   | 55         | 37        | 561    | 467   | 55           | 39        | 561    | 0    | 0%         | 0.00      |
|           | IN        | IBOUND TOTAL               | 8,447 | 1,041      | 607       | 10,095 | 8,408 | 1,040        | 616       | 10,064 | -31  | 0%         | 0.31      |



### Wirral Traffic Model2015 Model Extension and Rebase Local Model Validation Report



|           |           |                            |        |            |           |        |        |              |           |        | DMRB | (1) GEH Va | alidation |
|-----------|-----------|----------------------------|--------|------------|-----------|--------|--------|--------------|-----------|--------|------|------------|-----------|
|           |           |                            | (      | Observed F | low (PCUs | )      |        | Modelled Flo | ow (PCUs) |        | (    | Total PCUs | s)        |
| Direction | Cordon Pt | Road Name                  | Car    | LGV        | OGV       | Total  | Car    | LGV          | OGV       | Total  | Diff | % Diff     | GEH       |
|           | 1         | A554 Bayswater Road        | 513    | 60         | 40        | 613    | 511    | 59           | 39        | 609    | -5   | -1%        | 0.19      |
|           | 2         | A551 Leasowe Road          | 633    | 74         | 50        | 757    | 615    | 72           | 38        | 725    | -32  | -4%        | 1.18      |
|           | 3         | A554                       | 1,170  | 137        | 92        | 1,399  | 1,162  | 139          | 91        | 1,392  | -7   | 0%         | 0.17      |
|           | 4         | A553 Hoylake Road          | 631    | 84         | 15        | 730    | 634    | 84           | 15        | 733    | 2    | 0%         | 0.08      |
|           | 5         | A551 Upton Road            | 920    | 101        | 64        | 1,086  | 942    | 159          | 172       | 1,272  | 186  | 17%        | 5.43      |
|           | 6         | A5027 Upton By-Pass        | 1,384  | 78         | 29        | 1,491  | 1,351  | 100          | 27        | 1,478  | -13  | -1%        | 0.34      |
|           | 7         | A551 Upton Road            | 520    | 39         | 22        | 581    | 486    | 42           | 25        | 554    | -27  | -5%        | 1.13      |
|           | 8         | A5027 Upton Road           | 678    | 79         | 53        | 810    | 672    | 54           | 19        | 745    | -65  | -8%        | 2.33      |
| Outbound  | 9         | A552 Woodchurch Road       | 935    | 55         | 37        | 1,027  | 887    | 67           | 37        | 991    | -36  | -4%        | 1.13      |
|           | 10        | Station Road               | 507    | 30         | 8         | 545    | 535    | 63           | 0         | 597    | 53   | 10%        | 2.21      |
|           | 11        | A5137 Brimstage Road       | 528    | 26         | 15        | 569    | 507    | 18           | 15        | 539    | -30  | -5%        | 1.27      |
|           | 12        | B5151 Clatterbridge Road   | 837    | 84         | 22        | 943    | 846    | 95           | 41        | 982    | 38   | 4%         | 1.24      |
|           | 13        | B5136 Thornton Commom Road | 306    | 46         | 8         | 361    | 307    | 46           | 8         | 361    | 0    | 0%         | 0.02      |
|           | 14        | Raby Mere Road             | 126    | 13         | 3         | 142    | 126    | 13           | 3         | 142    | 0    | 0%         | 0.04      |
|           | 15        | Hooton Road                | 344    | 40         | 27        | 412    | 351    | 35           | 8         | 394    | -18  | -4%        | 0.87      |
|           | 16        | Birkenhead Road            | 218    | 25         | 17        | 260    | 228    | 25           | 36        | 290    | 30   | 11%        | 1.79      |
|           | 17        | Chester High Road          | 774    | 90         | 61        | 925    | 785    | 88           | 61        | 933    | 8    | 1%         | 0.25      |
|           |           |                            | Car    | LGV        | OGV       | Total  | Car    | LGV          | OGV       | Total  | Diff | % Diff     | GEH       |
|           | OL        | JTBOUND TOTAL              | 11,025 | 1,062      | 563       | 12,650 | 10,943 | 1,158        | 635       | 12,737 | 86   | 1%         | 0.77      |
|           |           | 2-WAY TOTAL                | 19,472 | 2,103      | 1,170     | 22,746 | 19,352 | 2,198        | 1,251     | 22,801 | 55   | 0%         | 0.37      |

Local Model Validation Report

## Mott MacDonald

### Table E.4: Cordon 4 Wirral South East Results – AM

|           |           |                            |       |            |           |       |       |            |           |       | DMRB | (1) GEH Va | alidation |
|-----------|-----------|----------------------------|-------|------------|-----------|-------|-------|------------|-----------|-------|------|------------|-----------|
|           |           |                            | (     | Observed F | low (PCUs | ;)    | 1     | Modelled F | low (PCUs | )     | (    | Total PCUs | s)        |
| Direction | Cordon Pt | Road Name                  | Car   | LGV        | OGV       | Total | Car   | LGV        | OGV       | Total | Diff | % Diff     | GEH       |
|           | 1         | A41 New Chester Road       | 825   | 152        | 68        | 1,045 | 846   | 146        | 66        | 1,058 | 13   | 1%         | 0.40      |
|           | 2         | B5149 Old Chester Road     | 264   | 35         | 17        | 317   | 266   | 35         | 5         | 307   | -10  | -3%        | 0.57      |
|           | 3         | B5148 Church Road          | 267   | 44         | 14        | 325   | 271   | 44         | 8         | 323   | -2   | -1%        | 0.12      |
|           | 4         | Borough Road               | 368   | 28         | 8         | 404   | 372   | 35         | 8         | 415   | 11   | 3%         | 0.56      |
|           | 5         | B5151 Storeton Road        | 610   | 51         | 5         | 666   | 585   | 53         | 4         | 641   | -25  | -4%        | 0.97      |
|           | 6         | Station Road               | 507   | 30         | 8         | 545   | 535   | 63         | 0         | 597   | 53   | 10%        | 2.21      |
| Inbound   | 7         | B5151 Mount Road           | 561   | 57         | 14        | 632   | 621   | 82         | 20        | 722   | 91   | 14%        | 3.49      |
|           | 8         | B5137 Brimstage Road       | 987   | 83         | 27        | 1,098 | 961   | 73         | 16        | 1,050 | -48  | -4%        | 1.47      |
|           | 9         | B5136 Thornton Commom Road | 306   | 46         | 8         | 361   | 307   | 46         | 8         | 361   | 0    | 0%         | 0.02      |
|           | 10        | Raby Hall Road             | 126   | 13         | 3         | 142   | 126   | 13         | 3         | 142   | 0    | 0%         | 0.04      |
|           | 11        | Eastham Rake               | 86    | 9          | 2         | 97    | 86    | 9          | 2         | 97    | 0    | 0%         | 0.05      |
|           | 12        | A41 New Chester Road       | 1,198 | 150        | 237       | 1,585 | 1,099 | 152        | 176       | 1,427 | -158 | -10%       | 4.07      |
|           | 13        | B5132 Rivacre Road         | 107   | 11         | 3         | 120   | 101   | 7          | 0         | 108   | -13  | -10%       | 1.18      |
|           | IN        | IBOUND TOTAL               | 6,213 | 708        | 416       | 7,336 | 6,176 | 758        | 315       | 7,249 | -87  | -1%        | 1.01      |

### Wirral Traffic Model2015 Model Extension and Rebase Local Model Validation Report



|           |             |                            |        |            |           |        |        |            | DMRB (1) GEH Validation |        |      |            |      |
|-----------|-------------|----------------------------|--------|------------|-----------|--------|--------|------------|-------------------------|--------|------|------------|------|
|           |             |                            | (      | Observed F | low (PCUs | s)     | 1      | Modelled F | low (PCUs               | )      | (    | Total PCUs | 5)   |
| Direction | Cordon Pt   | Road Name                  | Car    | LGV        | OGV       | Total  | Car    | LGV        | OGV                     | Total  | Diff | % Diff     | GEH  |
|           | 1           | A41 New Chester Road       | 1,304  | 148        | 97        | 1,549  | 1,218  | 133        | 97                      | 1,449  | -100 | -6%        | 2.58 |
|           | 2           | B5149 Old Chester Road     | 627    | 57         | 3         | 688    | 691    | 55         | 3                       | 750    | 62   | 9%         | 2.30 |
|           | 3           | B5148 Church Road          | 642    | 41         | 11        | 693    | 652    | 59         | 14                      | 725    | 32   | 5%         | 1.20 |
|           | 4           | Borough Road               | 443    | 36         | 2         | 481    | 447    | 31         | 2                       | 480    | -1   | 0%         | 0.05 |
| Outbound  | 5           | B5151 Storeton Road        | 537    | 45         | 14        | 596    | 540    | 45         | 13                      | 598    | 2    | 0%         | 0.09 |
|           | 6           | Station Road               | 180    | 23         | 14        | 218    | 214    | 22         | 0                       | 236    | 18   | 8%         | 1.19 |
|           | 7           | B5151 Mount Road           | 763    | 77         | 20        | 860    | 747    | 79         | 20                      | 845    | -14  | -2%        | 0.50 |
|           | 8           | B5137 Brimstage Road       | 744    | 64         | 34        | 842    | 761    | 84         | 29                      | 874    | 31   | 4%         | 1.07 |
|           | 9           | B5136 Thornton Commom Road | 528    | 79         | 14        | 620    | 543    | 82         | 14                      | 639    | 19   | 3%         | 0.75 |
|           | 10          | Raby Hall Road             | 71     | 7          | 2         | 79     | 72     | 7          | 1                       | 80     | 1    | 1%         | 0.06 |
|           | 11          | Eastham Rake               | 115    | 12         | 3         | 129    | 120    | 12         | 2                       | 134    | 5    | 4%         | 0.41 |
|           | 11          | A41 New Chester Road       | 1,089  | 159        | 233       | 1,481  | 1,115  | 162        | 224                     | 1,501  | 20   | 1%         | 0.53 |
|           | 12          | B5132 Rivacre Road         | 70     | 7          | 2         | 79     | 35     | 5          | 0                       | 40     | -39  | -49%       | 5.03 |
|           |             |                            | Car    | LGV        | OGV       | Total  | Car    | LGV        | OGV                     | Total  | Diff | % Diff     | GEH  |
|           | OU          | TBOUND TOTAL               | 7,112  | 755        | 448       | 8,315  | 7,154  | 777        | 419                     | 8,350  | 35   | 0%         | 0.38 |
|           | 2-WAY TOTAL |                            | 13,325 | 1,462      | 864       | 15,651 | 13,330 | 1,535      | 734                     | 15,599 | -52  | 0%         | 0.42 |



# Appendix F. Flow Calibration IP



#### Table F.1: Cordon 1 Birkenhead Inner Results – IP

|                |           |                         |       |            |           |          |       |            |           | DMRB  | 3 (1) GEH Validation |            |      |  |  |  |
|----------------|-----------|-------------------------|-------|------------|-----------|----------|-------|------------|-----------|-------|----------------------|------------|------|--|--|--|
|                |           |                         | (     | Observed F | low (PCUs | s)       |       | Modelled F | low (PCUs | )     | (                    | Total PCUs | 5)   |  |  |  |
| Direction      | Cordon Pt | Road Name               | Car   | LGV        | OGV       | Total    | Car   | LGV        | OGV       | Total | Diff                 | % Diff     | GEH  |  |  |  |
|                | 1         | Queensway Mersey Tunnel | 572   | 117        | 0         | 689      | 564   | 117        | 0         | 681   | -8                   | -1%        | 0.31 |  |  |  |
|                | 2         | A554 Tower Road         | 464   | 92         | 56        | 612      | 466   | 92         | 57        | 615   | 3                    | 1%         | 0.13 |  |  |  |
|                | 3         | A5027 Duke Street       | 290   | 78         | 85        | 453      | 291   | 78         | 85        | 454   | 2                    | 0%         | 0.07 |  |  |  |
|                | 4         | A5030 Beaufort Road     | 149   | 37         | 30        | 216      | 149   | 21         | 2         | 171   | -45                  | -21%       | 3.24 |  |  |  |
|                | 5         | A553 Laird Street       | 332   | 47         | 17        | 396      | 329   | 47         | 18        | 395   | -1                   | 0%         | 0.07 |  |  |  |
|                | 6         | A5027 Park Road North   | 258   | 38         | 7         | 302      | 257   | 37         | 21        | 316   | 14                   | 5%         | 0.78 |  |  |  |
| Inhound        | 7         | Ashville Road           | 202   | 30         | 32        | 265      | 200   | 28         | 22        | 250   | -15                  | -6%        | 0.92 |  |  |  |
| inbound        | 8         | Park Road South         | 269   | 26         | 8         | 303      | 286   | 30         | 8         | 324   | 22                   | 7%         | 1.23 |  |  |  |
|                | 9         | Oxton Road              | 280   | 33         | 7         | 320      | 280   | 33         | 7         | 320   | 0                    | 0%         | 0.02 |  |  |  |
|                | 10        | A552 Borough Road       | 473   | 62         | 14        | 549      | 475   | 63         | 15        | 553   | 3                    | 1%         | 0.15 |  |  |  |
|                | 11        | Derby Road              | 259   | 39         | 29        | 326      | 254   | 26         | 7         | 286   | -40                  | -12%       | 2.30 |  |  |  |
|                | 12        | B5148 Church Road       | 237   | 26         | 6         | 270      | 280   | 31         | 7         | 318   | 49                   | 18%        | 2.84 |  |  |  |
|                | 13        | B5149 Old Chester Road  | 287   | 44         | 8         | 339      | 288   | 44         | 8         | 341   | 2                    | 1%         | 0.11 |  |  |  |
|                | 14        | A41 New Chester Road    | 736   | 152        | 78        | 965      | 738   | 154        | 78        | 970   | 4                    | 0%         | 0.14 |  |  |  |
|                |           | INBOUND TOTAL           | 4,808 | 820        | 376       | 6,005    | 4,857 | 802        | 335       | 5,994 | -11                  | 0%         | 0.15 |  |  |  |
| Direction      | Cordon Pt | Road Name               | Car   | LGV        | OGV       | Total    | Car   | LGV        | OGV       | Total | Diff                 | % Diff     | GEH  |  |  |  |
|                | 1         | Queensway Mersey Tunnel | 645   | 141        | 0         | 786      | 654   | 144        | 0         | 798   | 12                   | 2%         | 0.43 |  |  |  |
|                | 2         | A554 Tower Road         | 548   | 99         | 74        | 720      | 544   | 99         | 74        | 717   | -3                   | 0%         | 0.12 |  |  |  |
|                | 3         | A5027 Duke Street       | 287   | 78         | 80        | 445      | 276   | 75         | 80        | 431   | -13                  | -3%        | 0.63 |  |  |  |
|                | 4         | A5030 Beaufort Road     | 181   | 38         | 19        | 238      | 186   | 38         | 7         | 231   | -7                   | -3%        | 0.47 |  |  |  |
|                | 5         | A553 Laird Street       | 328   | 48         | 15        | 391      | 328   | 48         | 18        | 393   | 2                    | 1%         | 0.11 |  |  |  |
|                | 6         | A5027 Park Road North   | 276   | 32         | 9         | 317      | 277   | 32         | 18        | 327   | 11                   | 3%         | 0.60 |  |  |  |
| Outbound       | 7         | Ashville Road           | 212   | 32         | 35        | 279      | 213   | 32         | 16        | 262   | -17                  | -6%        | 1.03 |  |  |  |
| Culbound       | 8         | Park Road South         | 307   | 20         | 6         | 333      | 307   | 20         | 6         | 333   | 0                    | 0%         | 0.00 |  |  |  |
|                | 9         | Oxton Road              | 259   | 26         | 5         | 290      | 259   | 26         | 5         | 290   | 0                    | 0%         | 0.01 |  |  |  |
|                | 10        | A552 Borough Road       | 401   | 60         | 20        | 481      | 398   | 60         | 20        | 477   | -4                   | -1%        | 0.16 |  |  |  |
|                | 11        | Derby Road              | 250   | 37         | 25        | 313      | 243   | 27         | 6         | 276   | -37                  | -12%       | 2.13 |  |  |  |
|                | 12        | B5148 Church Road       | 257   | 28         | 7         | 292      | 317   | 33         | 8         | 357   | 66                   | 23%        | 3.65 |  |  |  |
|                | 13        | B5149 Old Chester Road  | 315   | 53         | 5         | 372      | 314   | 53         | 5         | 372   | 0                    | 0%         | 0.01 |  |  |  |
|                | 14        | A41 New Chester Road    | 670   | 136        | 86        | 891      | 671   | 126        | 86        | 883   | -8                   | -1%        | 0.28 |  |  |  |
|                |           |                         | Car   | LGV        | OGV       | Total    | Car   | LGV        | OGV       | Total | Diff                 | % Diff     | GEH  |  |  |  |
| OUTBOUND TOTAL |           | 4.935                   | 827   | 385        | 6.147     | 4.987    | 813   | 349        | 6.148     | 2     | 0%                   | 0.02       |      |  |  |  |
|                |           |                         | .,000 | 011        | 000       | •, · · · | .,    |            | •.•       | •,•   | -                    | 0/0        |      |  |  |  |

350170/ITD/ITN/1/A 07 April 2016 \\mottmac\project\Liverpool\ITD\MISData\Modelling\WirralModel\WP5-BaseYearAssignments\WP5a-Documents\Wirral\_2015\_Model\_Rebase\_LMVR\_RevA\_Draft\_v2.docx 73

Local Model Validation Report

## Mott MacDonald

### Table F.2: Cordon 2 Birkenhead Outer Results - IP

|           |               |                        |     |            |           |       |       |            |           |       | DMRB (1) GEH Validation |            |      |  |
|-----------|---------------|------------------------|-----|------------|-----------|-------|-------|------------|-----------|-------|-------------------------|------------|------|--|
|           |               |                        | (   | Observed F | low (PCUs | ;)    | 1     | Modelled F | low (PCUs | )     | (                       | Total PCUs | 5)   |  |
| Direction | Cordon Pt     | Road Name              | Car | LGV        | OGV       | Total | Car   | LGV        | OGV       | Total | Diff                    | % Diff     | GEH  |  |
|           | 1             | Kingsway Mersey Tunnel | 896 | 160        | 304       | 1,359 | 904   | 160        | 303       | 1,368 | 8                       | 1%         | 0.23 |  |
|           | 2             | A554 Seabank Road      | 286 | 36         | 10        | 332   | 288   | 36         | 14        | 338   | 6                       | 2%         | 0.35 |  |
|           | 3             | B5143 Rake Lane        | 186 | 28         | 23        | 237   | 168   | 28         | 23        | 219   | -18                     | -8%        | 1.19 |  |
|           | 4             | Seaview Road           | 302 | 45         | 40        | 387   | 302   | 45         | 33        | 379   | -7                      | -2%        | 0.38 |  |
|           | 5             | Belvidere Road         | 180 | 27         | 24        | 230   | 180   | 27         | 9         | 216   | -14                     | -6%        | 0.95 |  |
|           | 6             | A551 Wallasey Road     | 435 | 53         | 12        | 500   | 435   | 53         | 12        | 500   | 0                       | 0%         | 0.01 |  |
|           | 7             | A59 (East of M53 J1)   | 755 | 115        | 93        | 963   | 748   | 115        | 224       | 1,086 | 124                     | 13%        | 3.87 |  |
| Inhound   | 8             | A5139 Dock Road        | 524 | 124        | 143       | 791   | 525   | 125        | 143       | 792   | 2                       | 0%         | 0.06 |  |
| inbound   | 9             | A553 Hoylake Road      | 488 | 74         | 59        | 621   | 487   | 74         | 41        | 602   | -19                     | -3%        | 0.75 |  |
|           | 10            | A5027 Upton Road       | 431 | 44         | 13        | 488   | 435   | 44         | 17        | 496   | 8                       | 2%         | 0.34 |  |
|           | 11            | A552 Woodchurch Road   | 893 | 103        | 56        | 1,052 | 877   | 103        | 50        | 1,030 | -21                     | -2%        | 0.66 |  |
|           | 12            | B5151 Storeton Road    | 424 | 44         | 10        | 478   | 426   | 44         | 16        | 485   | 8                       | 2%         | 0.35 |  |
|           | 13            | Borough Road           | 247 | 27         | 5         | 279   | 255   | 26         | 5         | 286   | 7                       | 2%         | 0.39 |  |
|           | 14            | B5148 Church Road      | 255 | 28         | 3         | 286   | 257   | 28         | 4         | 289   | 3                       | 1%         | 0.21 |  |
|           | 15            | B5149 Old Chester Road | 287 | 44         | 8         | 339   | 288   | 44         | 8         | 341   | 2                       | 1%         | 0.11 |  |
|           | 16            | A41 New Chester Road   | 736 | 152        | 78        | 965   | 738   | 154        | 78        | 970   | 4                       | 0%         | 0.14 |  |
|           | INBOUND TOTAL |                        |     | 1,102      | 880       | 9,305 | 7,313 | 1,107      | 978       | 9,398 | 93                      | 1%         | 0.96 |  |



|                 |             |                        |       |            |           |        |        |            |           |        | DMRB (1) GEH Validation |            |      |  |
|-----------------|-------------|------------------------|-------|------------|-----------|--------|--------|------------|-----------|--------|-------------------------|------------|------|--|
|                 |             |                        | (     | Observed F | low (PCUs | )      | 1      | Modelled F | low (PCUs | )      | (                       | Total PCUs | ;)   |  |
| Direction       | Cordon Pt   | Road Name              | Car   | LGV        | OGV       | Total  | Car    | LGV        | OGV       | Total  | Diff                    | % Diff     | GEH  |  |
|                 | 1           | Kingsway Mersey Tunnel | 936   | 165        | 344       | 1,445  | 924    | 162        | 343       | 1,428  | -17                     | -1%        | 0.45 |  |
|                 | 2           | A554 Seabank Road      | 324   | 47         | 11        | 381    | 322    | 47         | 19        | 388    | 7                       | 2%         | 0.38 |  |
|                 | 3           | B5143 Rake Lane        | 210   | 32         | 25        | 268    | 213    | 32         | 25        | 270    | 3                       | 1%         | 0.16 |  |
|                 | 4           | Seaview Road           | 364   | 54         | 40        | 459    | 265    | 25         | 40        | 330    | -129                    | -28%       | 6.47 |  |
|                 | 5           | Belvidere Road         | 172   | 26         | 24        | 221    | 172    | 26         | 6         | 204    | -17                     | -8%        | 1.15 |  |
| -<br>Outbound - | 6           | A551 Wallasey Road     | 363   | 45         | 10        | 418    | 360    | 45         | 10        | 416    | -2                      | 0%         | 0.10 |  |
|                 | 7           | A59 (East of M53 J1)   | 761   | 116        | 93        | 970    | 766    | 116        | 178       | 1,060  | 90                      | 9%         | 2.84 |  |
|                 | 8           | A5139 Dock Road        | 614   | 130        | 138       | 882    | 605    | 129        | 138       | 872    | -10                     | -1%        | 0.34 |  |
|                 | 9           | A553 Hoylake Road      | 435   | 66         | 52        | 553    | 436    | 66         | 42        | 543    | -10                     | -2%        | 0.41 |  |
|                 | 10          | A5027 Upton Road       | 398   | 34         | 4         | 436    | 397    | 34         | 4         | 435    | -1                      | 0%         | 0.04 |  |
|                 | 11          | A552 Woodchurch Road   | 917   | 105        | 68        | 1,090  | 920    | 105        | 68        | 1,093  | 3                       | 0%         | 0.08 |  |
|                 | 12          | B5151 Storeton Road    | 471   | 44         | 11        | 526    | 465    | 44         | 9         | 518    | -8                      | -2%        | 0.36 |  |
|                 | 13          | Borough Road           | 255   | 31         | 4         | 290    | 255    | 31         | 4         | 290    | 0                       | 0%         | 0.02 |  |
|                 | 14          | B5148 Church Road      | 281   | 36         | 9         | 326    | 287    | 34         | 8         | 329    | 3                       | 1%         | 0.16 |  |
|                 | 15          | B5149 Old Chester Road | 315   | 53         | 5         | 372    | 314    | 53         | 5         | 372    | 0                       | 0%         | 0.01 |  |
|                 | 16          | A41 New Chester Road   | 670   | 136        | 86        | 891    | 671    | 126        | 86        | 883    | -8                      | -1%        | 0.28 |  |
|                 |             |                        | Car   | LGV        | OGV       | Total  | Car    | LGV        | OGV       | Total  | Diff                    | % Diff     | GEH  |  |
|                 | OU          | ITBOUND TOTAL          | 7,484 | 1,118      | 925       | 9,527  | 7,373  | 1,075      | 984       | 9,431  | -96                     | -1%        | 0.98 |  |
|                 | 2-WAY TOTAL |                        |       | 2,220      | 1,804     | 18,832 | 14,686 | 2,182      | 1,961     | 18,829 | -3                      | 0%         | 0.02 |  |

Local Model Validation Report

## Mott MacDonald

### Table F.3: Cordon 3 Wirral West of M53 Results – IP

|           |               |                            |     |            |           |       |       |             | DMRB (1) GEH Validation |       |              |        |      |
|-----------|---------------|----------------------------|-----|------------|-----------|-------|-------|-------------|-------------------------|-------|--------------|--------|------|
|           |               |                            | (   | Observed F | low (PCUs | ;)    |       | Modelled Fl | ow (PCUs)               |       | (Total PCUs) |        |      |
| Direction | Cordon Pt     | Road Name                  | Car | LGV        | OGV       | Total | Car   | LGV         | OGV                     | Total | Diff         | % Diff | GEH  |
|           | 1             | A554 Bayswater Road        | 409 | 61         | 49        | 519   | 419   | 61          | 49                      | 529   | 10           | 2%     | 0.43 |
|           | 2             | A551 Leasowe Road          | 498 | 75         | 60        | 633   | 496   | 59          | 60                      | 616   | -18          | -3%    | 0.71 |
|           | 3             | A554                       | 722 | 108        | 86        | 917   | 720   | 108         | 86                      | 914   | -2           | 0%     | 0.07 |
|           | 4             | A553 Hoylake Road          | 473 | 58         | 22        | 553   | 472   | 58          | 27                      | 557   | 3            | 1%     | 0.13 |
|           | 5             | A551 Upton Road            | 509 | 72         | 66        | 647   | 506   | 72          | 124                     | 703   | 56           | 9%     | 2.14 |
|           | 6             | A5027 Upton By-Pass        | 594 | 61         | 41        | 697   | 612   | 61          | 41                      | 714   | 17           | 2%     | 0.65 |
|           | 7             | A551 Upton Road            | 284 | 34         | 24        | 343   | 282   | 34          | 24                      | 339   | -3           | -1%    | 0.18 |
|           | 8             | A5027 Upton Road           | 541 | 81         | 65        | 688   | 564   | 70          | 18                      | 652   | -36          | -5%    | 1.37 |
| Inbound   | 9             | A552 Woodchurch Road       | 811 | 78         | 60        | 950   | 822   | 79          | 60                      | 961   | 12           | 1%     | 0.37 |
|           | 10            | Station Road               | 181 | 16         | 7         | 204   | 197   | 21          | 0                       | 218   | 13           | 6%     | 0.91 |
|           | 11            | A5137 Brimstage Road       | 294 | 29         | 21        | 344   | 294   | 29          | 21                      | 344   | 0            | 0%     | 0.02 |
|           | 12            | B5151 Clatterbridge Road   | 354 | 38         | 9         | 401   | 354   | 53          | 33                      | 440   | 39           | 10%    | 1.90 |
|           | 13            | B5136 Thornton Commom Road | 212 | 32         | 8         | 252   | 212   | 32          | 8                       | 252   | 0            | 0%     | 0.01 |
|           | 14            | Raby Mere Road             | 91  | 10         | 2         | 104   | 91    | 10          | 2                       | 103   | 0            | 0%     | 0.02 |
|           | 15            | Hooton Road                | 182 | 27         | 22        | 232   | 182   | 26          | 8                       | 216   | -16          | -7%    | 1.08 |
|           | 16            | Birkenhead Road            | 103 | 15         | 12        | 131   | 103   | 15          | 7                       | 125   | -6           | -5%    | 0.54 |
|           | 17            | Chester High Road          | 446 | 67         | 53        | 566   | 443   | 67          | 53                      | 563   | -2           | 0%     | 0.10 |
|           | INBOUND TOTAL |                            |     | 864        | 610       | 8,180 | 6,769 | 855         | 621                     | 8,246 | 66           | 1%     | 0.73 |

### Wirral Traffic Model2015 Model Extension and Rebase Local Model Validation Report



|           |                |                            |     |            |           |        |        |              |           |        |      | DMRB (1) GEH Validation |      |  |  |
|-----------|----------------|----------------------------|-----|------------|-----------|--------|--------|--------------|-----------|--------|------|-------------------------|------|--|--|
|           |                |                            | (   | Observed F | low (PCUs | )      |        | Modelled Flo | ow (PCUs) |        | (    | Total PCUs              | ;)   |  |  |
| Direction | Cordon Pt      | Road Name                  | Car | LGV        | OGV       | Total  | Car    | LGV          | OGV       | Total  | Diff | % Diff                  | GEH  |  |  |
|           | 1              | A554 Bayswater Road        | 502 | 76         | 61        | 638    | 502    | 76           | 61        | 639    | 1    | 0%                      | 0.04 |  |  |
|           | 2              | A551 Leasowe Road          | 456 | 69         | 55        | 579    | 456    | 69           | 26        | 551    | -29  | -5%                     | 1.20 |  |  |
|           | 3              | A554                       | 721 | 108        | 86        | 916    | 731    | 108          | 102       | 941    | 25   | 3%                      | 0.82 |  |  |
|           | 4              | A553 Hoylake Road          | 418 | 53         | 20        | 491    | 419    | 53           | 31        | 503    | 11   | 2%                      | 0.51 |  |  |
|           | 5              | A551 Upton Road            | 507 | 68         | 74        | 648    | 473    | 68           | 139       | 680    | 32   | 5%                      | 1.24 |  |  |
|           | 6              | A5027 Upton By-Pass        | 598 | 72         | 54        | 723    | 595    | 72           | 67        | 733    | 10   | 1%                      | 0.37 |  |  |
|           | 7              | A551 Upton Road            | 272 | 29         | 20        | 321    | 278    | 29           | 20        | 326    | 5    | 2%                      | 0.27 |  |  |
| Outbound  | 8              | A5027 Upton Road           | 492 | 74         | 59        | 626    | 481    | 68           | 34        | 582    | -43  | -7%                     | 1.77 |  |  |
|           | 9              | A552 Woodchurch Road       | 783 | 77         | 60        | 919    | 657    | 78           | 40        | 774    | -145 | -16%                    | 4.99 |  |  |
|           | 10             | Station Road               | 186 | 22         | 8         | 216    | 214    | 24           | 0         | 237    | 21   | 10%                     | 1.40 |  |  |
|           | 11             | A5137 Brimstage Road       | 274 | 32         | 23        | 328    | 276    | 32           | 13        | 321    | -7   | -2%                     | 0.38 |  |  |
|           | 12             | B5151 Clatterbridge Road   | 367 | 40         | 10        | 416    | 368    | 47           | 48        | 462    | 46   | 11%                     | 2.19 |  |  |
|           | 13             | B5136 Thornton Commom Road | 201 | 30         | 8         | 240    | 201    | 30           | 8         | 239    | -1   | 0%                      | 0.04 |  |  |
|           | 14             | Raby Mere Road             | 68  | 8          | 2         | 78     | 68     | 8            | 2         | 78     | 0    | 0%                      | 0.02 |  |  |
|           | 15             | Hooton Road                | 171 | 26         | 21        | 218    | 171    | 26           | 21        | 218    | 1    | 0%                      | 0.04 |  |  |
|           | 16             | Birkenhead Road            | 109 | 16         | 13        | 139    | 110    | 27           | 13        | 150    | 12   | 8%                      | 0.97 |  |  |
|           | 17             | Chester High Road          | 513 | 78         | 63        | 654    | 516    | 78           | 62        | 656    | 2    | 0%                      | 0.09 |  |  |
|           |                |                            | Car | LGV        | OGV       | Total  | Car    | LGV          | OGV       | Total  | Diff | % Diff                  | GEH  |  |  |
|           | OUTBOUND TOTAL |                            |     | 876        | 636       | 8,150  | 6,514  | 892          | 686       | 8,091  | -59  | -1%                     | 0.65 |  |  |
|           | 2-WAY TOTAL    |                            |     | 1,740      | 1,246     | 16,330 | 13,283 | 1,747        | 1,307     | 16,337 | 7    | 0%                      | 0.06 |  |  |

Local Model Validation Report

## Mott MacDonald

### Table F.4: Cordon 4 Wirral South East Results – IP

|           |               |                            |       |            |           |       |       |            |           |       | DMRB (1) GEH Validation |            |      |  |
|-----------|---------------|----------------------------|-------|------------|-----------|-------|-------|------------|-----------|-------|-------------------------|------------|------|--|
|           |               |                            | (     | Observed F | low (PCUs | ;)    | 1     | Modelled F | low (PCUs | )     | (                       | Total PCUs | S)   |  |
| Direction | Cordon Pt     | Road Name                  | Car   | LGV        | OGV       | Total | Car   | LGV        | OGV       | Total | Diff                    | % Diff     | GEH  |  |
|           | 1             | A41 New Chester Road       | 670   | 136        | 86        | 891   | 671   | 126        | 86        | 883   | -8                      | -1%        | 0.28 |  |
|           | 2             | B5149 Old Chester Road     | 315   | 53         | 5         | 372   | 314   | 53         | 5         | 372   | 0                       | 0%         | 0.01 |  |
|           | 3             | B5148 Church Road          | 281   | 36         | 9         | 326   | 287   | 34         | 8         | 329   | 3                       | 1%         | 0.16 |  |
| Inbound   | 4             | Borough Road               | 255   | 31         | 4         | 290   | 255   | 31         | 4         | 290   | 0                       | 0%         | 0.02 |  |
|           | 5             | B5151 Storeton Road        | 471   | 44         | 11        | 526   | 465   | 44         | 9         | 518   | -8                      | -2%        | 0.36 |  |
|           | 6             | Station Road               | 186   | 22         | 8         | 216   | 214   | 24         | 0         | 237   | 21                      | 10%        | 1.40 |  |
|           | 7             | B5151 Mount Road           | 412   | 45         | 11        | 467   | 419   | 45         | 17        | 481   | 13                      | 3%         | 0.61 |  |
|           | 8             | B5137 Brimstage Road       | 630   | 71         | 36        | 738   | 707   | 82         | 35        | 824   | 86                      | 12%        | 3.08 |  |
|           | 9             | B5136 Thornton Commom Road | 201   | 30         | 8         | 240   | 201   | 30         | 8         | 239   | -1                      | 0%         | 0.04 |  |
|           | 10            | Raby Hall Road             | 68    | 8          | 2         | 78    | 68    | 8          | 2         | 78    | 0                       | 0%         | 0.02 |  |
|           | 11            | Eastham Rake               | 65    | 7          | 2         | 73    | 65    | 7          | 2         | 74    | 1                       | 1%         | 0.08 |  |
|           | 12            | A41 New Chester Road       | 705   | 123        | 221       | 1,049 | 699   | 123        | 211       | 1,033 | -16                     | -2%        | 0.50 |  |
|           | 13            | B5132 Rivacre Road         | 49    | 5          | 1         | 55    | 49    | 10         | 0         | 59    | 4                       | 7%         | 0.53 |  |
|           | INBOUND TOTAL |                            | 4,307 | 611        | 404       | 5,321 | 4,413 | 617        | 385       | 5,416 | 95                      | 2%         | 1.30 |  |

### Wirral Traffic Model2015 Model Extension and Rebase Local Model Validation Report



|           |             |                            |       |            |           |        |       |            |           |        | DMRB (1) GEH Validation |            |      |  |
|-----------|-------------|----------------------------|-------|------------|-----------|--------|-------|------------|-----------|--------|-------------------------|------------|------|--|
|           |             |                            | (     | Observed F | low (PCUs | 5)     | 1     | Modelled F | low (PCUs | )      | (                       | Total PCUs | \$)  |  |
| Direction | Cordon Pt   | Road Name                  | Car   | LGV        | OGV       | Total  | Car   | LGV        | OGV       | Total  | Diff                    | % Diff     | GEH  |  |
|           | 1           | A41 New Chester Road       | 736   | 152        | 78        | 965    | 738   | 154        | 78        | 970    | 4                       | 0%         | 0.14 |  |
|           | 2           | B5149 Old Chester Road     | 287   | 44         | 8         | 339    | 288   | 44         | 8         | 341    | 2                       | 1%         | 0.11 |  |
|           | 3           | B5148 Church Road          | 255   | 28         | 3         | 286    | 257   | 28         | 4         | 289    | 3                       | 1%         | 0.21 |  |
|           | 4           | Borough Road               | 247   | 27         | 5         | 279    | 255   | 26         | 5         | 286    | 7                       | 2%         | 0.39 |  |
| Outbound  | 5           | B5151 Storeton Road        | 424   | 44         | 10        | 478    | 426   | 44         | 16        | 485    | 8                       | 2%         | 0.35 |  |
|           | 6           | Station Road               | 181   | 16         | 7         | 204    | 197   | 21         | 0         | 218    | 13                      | 6%         | 0.91 |  |
|           | 7           | B5151 Mount Road           | 420   | 46         | 11        | 477    | 415   | 46         | 11        | 471    | -6                      | -1%        | 0.28 |  |
|           | 8           | B5137 Brimstage Road       | 594   | 63         | 35        | 692    | 594   | 67         | 35        | 696    | 4                       | 1%         | 0.16 |  |
|           | 9           | B5136 Thornton Commom Road | 212   | 32         | 8         | 252    | 212   | 32         | 8         | 252    | 0                       | 0%         | 0.01 |  |
|           | 10          | Raby Hall Road             | 91    | 10         | 2         | 104    | 91    | 10         | 2         | 103    | 0                       | 0%         | 0.02 |  |
|           | 11          | Eastham Rake               | 70    | 8          | 2         | 80     | 70    | 8          | 2         | 80     | 0                       | 0%         | 0.03 |  |
|           | 11          | A41 New Chester Road       | 748   | 136        | 247       | 1,131  | 747   | 136        | 216       | 1,100  | -31                     | -3%        | 0.92 |  |
|           | 12          | B5132 Rivacre Road         | 46    | 5          | 1         | 52     | 45    | 10         | 0         | 55     | 3                       | 6%         | 0.44 |  |
|           |             |                            | Car   | LGV        | OGV       | Total  | Car   | LGV        | OGV       | Total  | Diff                    | % Diff     | GEH  |  |
|           | OU          | TBOUND TOTAL               | 4,313 | 608        | 418       | 5,339  | 4,335 | 628        | 384       | 5,346  | 8                       | 0%         | 0.11 |  |
|           | 2-WAY TOTAL |                            | 8,619 | 1,219      | 822       | 10,660 | 8,748 | 1,245      | 770       | 10,763 | 103                     | 1%         | 0.99 |  |